scholarly journals SUBSTANTIATION OF PHYSICAL EXPERIMENTS WITH ELECTROMAGNETIC TOOL IN THIN-LAYER MODELS SUBSEQUENT TO NUMERICAL SIMULATION RESULTS

2021 ◽  
Vol 2 (2) ◽  
pp. 168-173
Author(s):  
Igor V. Mikhaylov ◽  
Marina N. Nikitenko ◽  
Irina V. Surodina

We performed 3D finite-difference simulation of electromagnetic signals from the logging tool with toroidal coils in electrolytic-tank-based thin-layer models. Following the simulation results, we elucidated the thicknesses and resistivities of the interlayers, for which the signals in a thin-layer and the equivalent macroanisotropic model coincide within the specified error.

2012 ◽  
Vol 170-173 ◽  
pp. 2325-2328
Author(s):  
Yang Liu ◽  
Zhe Wang

Numerical simulation of the consolidation test was developed in different drainage conditions using the finite difference method. Soil sample was divided into layers to determine the time-steps of the test. A series of simulation tests were carried out to study the influence of drainage height on the coefficient ratio. Finally, some experiments data were compared with the numerical simulation results. Numerical results indicate that the simulation method broke through the limitation of test apparatus, and made it possible to conduct big size specimen consolidation test under certain conditions.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012059
Author(s):  
I Mikhaylov ◽  
I Surodina ◽  
V Glinskikh ◽  
M Nikitenko

Abstract The research is aimed at expanding the applicability of the logging tool with toroidal coils from vertical to highly deviated wells. Its electromagnetic signals are computed with a three-dimensional finite-difference simulation algorithm on the computing resources of the Siberian Supercomputer Center of SB RAS, which is accompanied by a multi-aspect numerical analysis of the signals. We consider a wide range of geoelectric models with various resistivity contrasts: those of oil-, gas- and water-saturated reservoirs having a different number of horizontal boundaries and varying thicknesses, including the case of fine layering.


2006 ◽  
Vol 65 (16) ◽  
pp. 1533-1546
Author(s):  
Yu. Ye. Gordienko ◽  
S. A. Zuev ◽  
V. V. Starostenko ◽  
V. Yu. Tereshchenko ◽  
A. A. Shadrin

Author(s):  
Jialei Song ◽  
Yong Zhong ◽  
Ruxu Du ◽  
Ling Yin ◽  
Yang Ding

In this paper, we investigate the hydrodynamics of swimmers with three caudal fins: a round one corresponding to snakehead fish ( Channidae), an indented one corresponding to saithe ( Pollachius virens), and a lunate one corresponding to tuna ( Thunnus thynnus). A direct numerical simulation (DNS) approach with a self-propelled fish model was adopted. The simulation results show that the caudal fin transitions from a pushing/suction combined propulsive mechanism to a suction-dominated propulsive mechanism with increasing aspect ratio ( AR). Interestingly, different from a previous finding that suction-based propulsion leads to high efficiency in animal swimming, this study shows that the utilization of suction-based propulsion by a high- AR caudal fin reduces swimming efficiency. Therefore, the suction-based propulsive mechanism does not necessarily lead to high efficiency, while other factors might play a role. Further analysis shows that the large lateral momentum transferred to the flow due to the high depth of the high- AR caudal fin leads to the lowest efficiency despite the most significant suction.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Wu Xianfang ◽  
Du Xinlai ◽  
Tan Minggao ◽  
Liu Houlin

The wear-ring abrasion can cause performance degradation of the marine centrifugal pump. In order to study the effect of front and back wear-ring clearance on a pump, test and numerical simulation were used to investigate the performance change of a pump. The test results show that the head and efficiency of pump decrease by 3.56% and 9.62% respectively at 1.0 Qd due to the wear-ring abrasion. Under 1.0 Qd, with the increase of the front wear-ring the vibration velocity at pump foot increases from 0.4 mm/s to 1.0 mm/s. The axis passing frequency (APF) at the measuring points increases significantly and there appears new characteristic frequency of 3APF and 4APF. The numerical simulation results show that the front wear-ring abrasion affects the flow at the inlet of the front chamber of the pump and impeller passage. And the back wear-ring abrasion has obvious effect on the flow in the back chamber of the pump and impeller passage, while the multi-malfunction of the front wear-ring abrasion and back wear-ring abrasion has the most obvious effect on the flow velocity and flow stability inside pump. The pressure pulsation at Blade Passing Frequency (BPF) of the three schemes all decrease with the increase of the clearance.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


2014 ◽  
Vol 496-500 ◽  
pp. 642-645
Author(s):  
Yun Wang ◽  
Wei Zhang

In view of power system in water-air UAV requirements, combine with the centrifugal impeller for aero-engine and the pump impeller. The design of a impeller of centrifugal compressor can work on the air and in the water for the new concept of air-water engine. With 3D design and a 3D CFD solver on it and analysis the results of numerical simulation. Results show that the designed impeller successfully reached the goal on the air and in the water. The experiences accumulated in this procedure are useful for similar impeller aerodynamic designs.


2012 ◽  
Vol 204-208 ◽  
pp. 4884-4887
Author(s):  
Jian Feng Wu ◽  
Cai Hua Wang ◽  
Chang Li Song

The numerical simulation of construction is to obtain the desired accuracy. It depends on the theoretical basis of the calculator and selection of the various important factors in the actual operation. For this problem, this paper adopting the current code for the design of building structures as the comparison standard, using the FLUENT software, taking the numerical simulation results of a high building’s wind load shape coefficient of for example, discussing the influence of four kinds of the convective terms discretization scheme, respectively the first-order upwind, the second order upwind , power law and Quadratic upwind interpolation for convective kinematics, on the simulation results of architectural numerical wind tunnel, provides the reference for the rational use of numerical wind tunnel method.


2021 ◽  
Vol 11 (10) ◽  
pp. 4709
Author(s):  
Dacheng Huang ◽  
Jianrun Zhang

To explore the mechanical properties of the braided corrugated hose, the space curve parametric equation of the braided tube is deduced, specific to the structural features of the braided tube. On this basis, the equivalent braided tube model is proposed based on the same axial stiffness in order to improve the calculational efficiency. The geometric model and the Finite Element Model of the DN25 braided corrugated hose is established. The numerical simulation results are analyzed, and the distribution of the equivalent stress and frictional stress is discussed. The maximum equivalent stress of the braided corrugated hose occurs at the braided tube, with the value of 903MPa. The maximum equivalent stress of the bellows occurs at the area in contact with the braided tube, with the value of 314MPa. The maximum frictional stress between the bellows and the braided tube is 88.46MPa. The tensile experiment of the DN25 braided corrugated hose is performed. The simulation results are in good agreement with test data, with a maximum error of 9.4%, verifying the rationality of the model. The study is helpful to the research of the axial stiffness of the braided corrugated hose and provides the base for wear and life studies on the braided corrugated hose.


Sign in / Sign up

Export Citation Format

Share Document