scholarly journals Analisis Pengaturan Quarter-Car Active Suspension Menggunakan Neuro-Fuzzy Adaptif PID Control

Author(s):  
Aprildy Randy Andrew Ferdinandus ◽  
Santo Junital Bumbungan

Car as a vehicle has a suspension on the wheels that connect the body with the road surface. The suspension is arranged in such way as to ensure the comfort in driving even on uneven road surfaces or damaged road surfaces. Because of the changes in road surface, it is very important to make adjustments to the suspension. The car suspension is adjusted using Neuro-Fuzzy Adaptive PID Control System so that the performance of the suspension can be improved in ensuring user comfort by reducing vibrations in the car body. Improved performance can be seen in the results of the suspension setting, which can suppress the movement of the car body because of the change in road surface more than 80%.

1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


2020 ◽  
Vol 9 (1) ◽  
pp. 922-933
Author(s):  
Qing’e Wang ◽  
Kai Zheng ◽  
Huanan Yu ◽  
Luwei Zhao ◽  
Xuan Zhu ◽  
...  

AbstractOil leak from vehicles is one of the most common pollution types of the road. The spilled oil could be retained on the surface and spread in the air voids of the road, which results in a decrease in the friction coefficient of the road, affects driving safety, and causes damage to pavement materials over time. Photocatalytic degradation through nano-TiO2 is a safe, long-lasting, and sustainable technology among the many methods for treating oil contamination on road surfaces. In this study, the nano-TiO2 photocatalytic degradation effect of road surface oil pollution was evaluated through the lab experiment. First, a glass dish was used as a substrate to determine the basic working condition of the test; then, a test method considering the impact of different oil erosion degrees was proposed to eliminate the effect of oil erosion on asphalt pavement and leakage on cement pavement, which led to the development of a lab test method for the nano-TiO2 photocatalytic degradation effect of oil pollution on different road surfaces.


2018 ◽  
Vol 51 (1) ◽  
pp. 65-81 ◽  
Author(s):  
N Strbac-Hadzibegovic ◽  
S Strbac-Savic ◽  
M Kostic

Numerous measurements have shown that the standard R classes do not represent adequately many road surfaces used nowadays. Therefore, the construction of portable reflectometers intended for on-site measurements of road surface reflection properties has been given particular attention during the last decade. This paper presents a new procedure for the improvement of the accuracy of such a portable reflectometer. Optimally extrapolating the values of the 20 luminance coefficients (q), each measured by the portable reflectometer for a set of angles of observation (α = 5°–80°), the 20 q-values referring to α = 1° are calculated. This enables their comparison with the corresponding q elements from each of the 447 reduced q-tables derived from the available r-table database, obtained by using a precise laboratory reflectometer on a wide variety of road samples. Selecting the closest reduced q-table, the corresponding r-table and the actual average luminance coefficient can be determined. In order to validate the proposed procedure, which can also be applied to other similar portable reflectometers, measurements of the luminance and overall and longitudinal luminance uniformities were carried out on eleven road-lighting installations. They showed that the results obtained by this procedure deviate only slightly from those obtained using r-tables determined by the laboratory reflectometer.


1956 ◽  
Vol 29 (4) ◽  
pp. 1425-1433 ◽  
Author(s):  
K. Knauerhase

Abstract To ensure safety from skidding, attention has up to now been devoted to building rough surface roads, to the development of the proper vehicle construction with respect to this feature, and to the factor most directly involved, the tires. Special attention has been directed in connection with this latter phase to a much more open tread patterning and to the effect of decreasing tire inflation, both of which affect the life of the tire adversely. These steps neglected to take advantage of the physical effect of adhesion, which, without lowering the durability, now makes possible an enhanced contribution to the cohesive friction by the profile grooves which are of necessity retained to keep the weight down. The goal is, therefore, to provide the smooth surfaces of the tread pattern that come in contact with the road with the greatest possible physical gripping power, or adhesion. After illustrating the interfacial magnitudes with the help of a vector diagram, we shall survey the laws of boundary surface adhesion. Here the great influence of the liquid involved in wet friction becomes clear and the particularly favorable interfacial tension property of water can be assessed. Since skidding can occur only at the interfaces : rubber-water, or water-road, the requirement is as follows : both the greatest possible wetting power between rubber and water, and also between water and road surface, that is, hydrophilic properties in the rubber and hydrophilic road surfaces, in order to reduce the danger of skidding. Good insurance against skidding requires hydrophilic rubber and a hydrophilic road surface, for a tire that has been developed to be nonskidding holds on a hydrophilic road surface and skids on a hydrophobic road surface. A hydrophobic tire, on the other hand, skids on any wet road. Although considerable advances have been made with respect to safety from skidding since rubber tires were first developed for motor vehicles, with increase of speeds this problem demands our attention to a greater and greater degree. Safety from skidding can result only from the combined efforts of road and car builders, tire makers, and the chemists and physicists of all three groups.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-9
Author(s):  
Zongwei Li ◽  
◽  
Vanliem Nguyen ◽  

The vertical vibration of the vehicles not only affects the durability of parts of the vehicle and road surface but it also affects the driver’s ride comfort and health. The aim of this study is to evaluate the effect of the vertical vibration on the driver’s ride comfort and health under the vehicle different operating conditions. The adaptive PID control is then applied to improve the vehicle's ride comfort. To achieve this goal, a 2D vibration model for the cars with 5 DOF is established to simulate. The different operating conditions of the speed, road surface, load, and working time of the vehicles are respectively evaluated based on the vertical weighted r.m.s. acceleration responses of the driver’s seat and the international standard ISO 2631. The results show that the road surface condition has the greatest influence on the driver’s comfort and health. With the vehicle's suspension system controlled by the adaptive PID controller, the ride comfort of the vehicle is significantly improved under the various road surfaces. Particularly, at ISO level B, the vertical driver's seat root-mean-square acceleration value is greatly reduced by 24.99 % while the pitching vehicle body root-mean-square acceleration value is decreased by 25.10 % in comparison with the passive suspension system.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuansheng Cheng ◽  
Xiaoqin Li ◽  
Xiaolan Man ◽  
Feifan Fan ◽  
Zhixiong Li

When agricultural vehicles operate in the field, the soft road excitation makes it difficult to measure the vehicle vibration. A camera-accelerator system can solve this issue by utilizing computer vision information; however, the relationship between the field road surface and the vehicle vibration response remains an unsolved problem. This study aims to investigate the correlation of the soft road excitation of different long-wave surfaces with the vehicle vibration response. Vibration equation between the vehicle and soft road surface system was established to produce an effective roughness model of the field soft road surface. In order to simulate the vehicle vibration state under different long-wave road surfaces, the soil rectangular pits with 21 kinds of different spans and depths were applied to the road surfaces, and a tractor vibration test system was built for vibration test. The frequency spectrum analysis was performed for the vibration response and the roughness signals of the road surfaces. The results showed that coefficient (R2) of frequency correlation between the roughness excitation and the original unevenness at the excitation point at the rear end of the rectangular soil pit fell within 0.9641∼0.9969. The main frequency band of the vibration response fell within 0∼3 Hz, and the phenomenon of quadruple frequency existed. The correlation of roughness excitation with quadruple frequency fell within 0.992165∼1. The primary excitation points were located at the rear end of the rectangular soil pit. In addition, it also indicated that when the vehicle was driven without autonomous power, the vehicle vibration frequency mainly depended on the excitation frequency of the field road surface and the frequency at the maximum vehicle vibration intensity was 2 or 3 times of that at the maximum field soft road excitation. These findings may provide a reference for optimal design of vibration reduction and control for agricultural vehicles.


2020 ◽  
Vol 14 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Erik Heinz ◽  
Christian Eling ◽  
Lasse Klingbeil ◽  
Heiner Kuhlmann

AbstractKinematic laser scanning is widely used for the fast and accurate acquisition of road corridors. In this context, road monitoring is a crucial application, since deficiencies of the road surface due to non-planarity and subsidence put traffic at risk. In recent years, a Mobile Mapping System (MMS) has been developed at the University of Bonn, consisting of a GNSS/IMU unit and a 2D laser scanner. The goal of this paper is to evaluate the accuracy and precision of this MMS, where the height component is of main interest. Following this, the applicability of the MMS for monitoring the planarity and subsidence of road surfaces is analyzed. The test area for this study is a 6 km long section of the A44n motorway in Germany. For the evaluation of the MMS, leveled control points along the motorway as well as point cloud comparisons of repeated passes were used. In order to transform the ellipsoidal heights of the MMS into the physical height system of the control points, undulations were utilized. In this respect, a local tilt correction for the geoid model was determined based on GNSS baselines and leveling, leading to a physical height accuracy of the MMS of < 10 mm (RMS). The related height precision has a standard deviation of about 5 mm. Hence, a potential subsidence of the road surface in the order of a few cm is detectable. In addition, the point clouds were used to analyze the planarity of the road surface. In the course of this, the cross fall of the road was estimated with a standard deviation of < 0.07 %. Yet, no deficiencies of the road surface in the form of significant rut depths or fictive water depths were detected, indicating the proper condition of the A44n motorway. According to our tests, the MMS is appropriate for road monitoring.


1972 ◽  
Vol 186 (1) ◽  
pp. 793-806
Author(s):  
D. M. Butler ◽  
J. R. Ellis

A method of analysis of suspension performance has been developed and is supported by experimental evidence. The particular advantage of this analysis is that all the suspension characteristics of real suspensions are calculated for all possible positions of the suspensions in a manner which relates the wheel movements directly to the body motions. The roll centre concept is discarded, with the result that the wheel movements, and hence tyre forces, which were masked by the limitations of the roll centre assumptions, are now available for examination and inclusion in any vehicle study. This has resulted in the development of more realistic models of vehicle ride and handling including anti-dive attitudes and other phenomena.


Author(s):  
B. E. Sabey

The control of a vehicle depends ultimately on the friction available between its tyres and the road surfaces to give adequate skidding resistance when wet under the many varied conditions of speed and road layout which are encountered in the course of normal driving. Methods of measuring the skidding resistance of road surfaces are described, with particular emphasis on the interpretation of results in relation to accident risk and on the minimum requirements for safety under different road conditions. The features of road surface texture which give these requirements are outlined and results of field surveys show the extent to which the requirements are met at the present time. The influence of tyre tread characteristics on the frictional properties of road surfaces is also discussed.


Sign in / Sign up

Export Citation Format

Share Document