scholarly journals Resistive Pulse Sensing with Micro-fabricated Nanopores (NP-RPS) for Sub-micron Biomolecule and Bionanoparticle Analysis

Author(s):  
Ke LIU

Biomolecules and bionanoparticles, such as nucleic acids, proteins, microorganisms and extracellular vesicles (EVs), are recognized as important targets for fundamental research, clinical diagnostic and therapeutic applications. To gain detailed information of those bionanoparticles, we demonstrate an electroosmotic (EO) driven transport behavior in silicon and silicon nitride-based nanopore, towards an accurate measure of concentration and sizing of sub-micro particles for a general biological interest.

2021 ◽  
Vol 12 (6) ◽  
pp. 1476
Author(s):  
Brian Jurgielewicz ◽  
Steven Stice ◽  
Yao Yao

Author(s):  
Florian Puhm ◽  
Eric Boilard ◽  
Kellie R. Machlus

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Mateus Silveira Freitas ◽  
Vânia Luiza Deperon Bonato ◽  
Andre Moreira Pessoni ◽  
Marcio L. Rodrigues ◽  
Arturo Casadevall ◽  
...  

ABSTRACT The release of extracellular vesicles (EVs) by fungi is a fundamental cellular process. EVs carry several biomolecules, including pigments, proteins, enzymes, lipids, nucleic acids, and carbohydrates, and are involved in physiological and pathological processes. EVs may play a pivotal role in the establishment of fungal infections, as they can interact with the host immune system to elicit multiple outcomes. It has been observed that, depending on the fungal pathogen, EVs can exacerbate or attenuate fungal infections. The study of the interaction between fungal EVs and the host immune system and understanding of the mechanisms that regulate those interactions might be useful for the development of new adjuvants as well as the improvement of protective immune responses against infectious or noninfectious diseases. In this review, we describe the immunomodulatory properties of EVs produced by pathogenic fungi and discuss their potential as adjuvants for prophylactic or therapeutic strategies.


Author(s):  
Jancy Johnson ◽  
Yu-Wen Wu ◽  
Chantelle Blyth ◽  
Gregor Lichtfuss ◽  
Hadi Goubran ◽  
...  

2021 ◽  
Vol 330 ◽  
pp. 15-30 ◽  
Author(s):  
Seunglee Kwon ◽  
Sol Shin ◽  
Minjae Do ◽  
Byeong Hoon Oh ◽  
Yeari Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document