scholarly journals Biodegradable polysarcosine with inserted alanine residues: Synthesis and enzymolysis

Author(s):  
Peng Zhou ◽  
Jun Ling

Polysarcosine (PSar), a water-soluble polypeptoid, is gifted with biodegradability via random ring-opening copolymerization of sarcosine- and alanine-N-thiocarboxyanhydrides catalyzed by acetic acid in controlled manners. Kinetic investigation reveals the copolymerization behavior of the two monomers. The random copolymers, named PAS, with high molecular weights between 22.0 and 43.6 kg/mol and tunable Ala molar fractions varying from 6% to 43% are able to be degraded by porcine pancreatic elastase within 50 days in mild conditions (pH=8.0 at 37 °C). Both the biodegradation rate and water solubility of PAS depend on the content of Ala residues. PAS with Ala fractions below 43% are soluble in water while the one with 43% Ala self-assembles in water into nanoparticles. Moreover, PAS are non-cytotoxic at the concentration of 5 mg/mL. The biodegradability and biocompatibility endow the Ala-containing PSar with potential to replace PEG as protective shield in drug-delivery.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1476
Author(s):  
Martina Ghezzi ◽  
Silvia Pescina ◽  
Andrea Delledonne ◽  
Ilaria Ferraboschi ◽  
Cristina Sissa ◽  
...  

Imiquimod (IMQ) is an immunostimulant drug approved for the topical treatment of actinic keratosis, external genital-perianal warts as well as superficial basal cell carcinoma that is used off-label for the treatment of different forms of skin cancers, including some malignant melanocytic proliferations such as lentigo maligna, atypical nevi and other in situ melanoma-related diseases. Imiquimod skin delivery has proven to be a real challenge due to its very low water-solubility and reduced skin penetration capacity. The aim of the work was to improve the drug solubility and skin retention using micelles of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a water-soluble derivative of vitamin E, co-encapsulating various lipophilic compounds with the potential ability to improve imiquimod affinity for the micellar core, and thus its loading into the nanocarrier. The formulations were characterized in terms of particle size, zeta potential and stability over time and micelles performance on the skin was evaluated through the quantification of imiquimod retention in the skin layers and the visualization of a micelle-loaded fluorescent dye by two-photon microscopy. The results showed that imiquimod solubility strictly depends on the nature and concentration of the co-encapsulated compounds. The micellar formulation based on TPGS and oleic acid was identified as the most interesting in terms of both drug solubility (which was increased from few µg/mL to 1154.01 ± 112.78 µg/mL) and micellar stability (which was evaluated up to 6 months from micelles preparation). The delivery efficiency after the application of this formulation alone or incorporated in hydrogels showed to be 42- and 25-folds higher than the one of the commercial creams.


1993 ◽  
Vol 305 ◽  
Author(s):  
Thuy D. Dang ◽  
Fred E. Arnold

AbstractAlthough benzobisazole rigid-rod polymers are well recognized for their outstanding tensile and modulus properties as well as their excellent thermal and thermal-oxidative stabilities, they can only be fabricated from acidic solvents. Benzobisirnidazole polymers containing pendent benthiazole or sulfonic acid groups exhibit partial solubility in DMSO. Reaction of these systems with sodium methylsulfinylmethide in DMSO abstracts the acidic proton from the benzobisimidazo unit and forms the polyanion. Subsequent reaction of the polyanion with 1,3-propanesultone provides water soluble systems. Random copolymers containing benzobisimidazo and benzobisthiazole repeat units were prepared in polyphosphoric acid and subjected to the derivatization reaction. Benzobisimidazo content in the copolymers varied from 10–0 mole percent. Minimum ionic charge along the rigid-rod backbone to obtain water solubility was determined to be approximately 10 mole percent as reflected in the benzobisimidazole repeat units.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Shiming Bai ◽  
Davaanyam Budragchaa ◽  
Shuqin Han ◽  
Taisei Kanamoto ◽  
Hideki Nakashima ◽  
...  

Sulfated glucopyranans having long alkyl groups were prepared by the ring-opening copolymerization of benzylated 1,6-anhydroglucopyranose with 3-O-octadecyl 1,6-anhydro-β-d-glucopyranose monomers, and subsequent deprotection and sulfation. Water-soluble sulfated glucopyranans with 2.8 and 4.7 mol% of 3-O-octadecyl group and lower molecular weights ofM-n= 2.5 × 103–5.1 × 103have potent anti-HIV activity at 0.05–1.25 μg/mL, even though sulfated polysaccharides with molecular weights belowM-n= 6 × 103had low anti-HIV activity. The interaction with poly-l-lysine as a model compound of proteins was analyzed by SPR, DSL, and zeta potential, indicating that the sulfated 3-O-octadecyl glucopyranans had high association and low dissociation rate constants, and the particle size increased after addition of poly-l-lysine. The anti-HIV activity was induced by electrostatic interaction between sulfate groups and amino groups of poly-l-lysine and by the synergistic effect of the hydrophobic long alkyl chain and hydrophilic sulfated group.


Bioimpacts ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Ashkan Hassankhani Rad ◽  
Farshid Asiaee ◽  
Sevda Jafari ◽  
Ali Shayanfar ◽  
Afsaneh Lavasanifar ◽  
...  

Introduction: Silibinin is a naturally occurring compound with known positive impacts on prevention and treatment of many types of human illnesses in general and cancer in particular. Silibinin is poorly water soluble which results in its insufficient bioavailability and lack of therapeutic efficacy in cancer. Here, we proposed to examine the potential of micelles composed of poly(ethylene glycol) (PEG) as the hydrophilic block and poly(ε-caprolactone) (PCL), poly(α-benzylcarboxylate-ε-caprolactone) (PBCL), or poly(lactide)-(PBCL) (PLA-PBCL) as hydrophobic blocks for enhancing the water solubility of silibinin and its targeted delivery to tumor. Methods: Co-solvent evaporation method was used to incorporate silibinin into PEG-PCL based micelles. Drug release profiles were assessed using dialysis bag method. MTT assay also was used to analyze functional activity of drug delivery in B16 melanoma cells. Results: Silibinin encapsulated micelles were shown to be less than 60 nm in size. Among different structures under study, the one with PEG-PBCL could incorporate silibinin with the highest encapsulation efficiency being 95.5%, on average. PEG-PBCL micelles could solubilize 1 mg silibinin in 1 mL water while the soluble amount of silibinin was found to be 0.092 mg/mL in the absence of polymeric micelles. PEG-PBCL micelles provided the sustained release of silibinin indicated with less than 30% release of silibinin within 24 hours. Silibinin encapsulated in PEG-PBCL micelles resulted in growth inhibitory effect in B16 cancer cells which was significantly higher than what observed with free drug. Conclusion: Our findings showed that PEG-PBCL micellar nanocarriers can be a useful vehicle for solubilization and targeted delivery of silibinin.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Dang Xuan Du ◽  
Bui Xuan Vuong

The preparation of water-soluble chitosan (WSC) with various molecular weights by gamma Co-60 irradiation of chitosan solution (5%) in the presence of hydrogen peroxide (1%) combined with acetylated reaction was carried out. The average molecular weight (Mw) of chitosan was measured by gel permeation chromatography (GPC). The chemical structure and the crystallinity of chitosan and WSC were characterized by Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD), respectively. The antioxidant activity of WSC and chitosan was investigated using the free radical 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+). Obtained results showed that chitosan with Mw of 18–90 kDa could be efficiently prepared by this technique in the dose range from 10 to 24.5 kGy. After the acetylated process, the resulting WSC possesses good solubility in a wide pH level of 2–12, and WSC with low molecular weight exhibited significantly higher antioxidant activity than the one with high molecular weight. In detail, the antioxidant activity was 14.7%, 70.5%, 84.2%, 89.4%, and 97.5% for WSC samples prepared from chitosan with Mw of 140.2 kDa, 91.4 kDa, 51.2 kDa, 35.3 kDa, and 18.1 kDa, respectively, at the same reaction time of 90 min. Moreover, the antioxidant activity of WSC was higher than that of chitosan. Thus, WSC prepared by gamma Co-60 irradiation and acetylated process can be potentially applied as a natural antioxidant agent.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaxi Xu ◽  
Xin Wang ◽  
Nikos Hadjichristidis

AbstractThe synthesis of well-defined block copolymers from a mixture of monomers without additional actions (“one-pot/one-step”) is an ideal and industrially valuable method. In addition, the presence of controlled alternating sequences in one or both blocks increases the structural diversity of polymeric materials, but, at the same time, the synthetic difficulty. Here we show that the “one-pot/one-step” ring-opening terpolymerization of a mixture of three monomers (N-sulfonyl aziridines; cyclic anhydrides and epoxides), with tert-butylimino-tris(dimethylamino)phosphorene (t-BuP1) as a catalyst, results in perfect diblock dialternating terpolymers having a sharp junction between the two blocks, with highly-controllable molecular weights and narrow molecular weight distributions (Ð < 1.08). The organocatalyst switches between two distinct polymerization cycles without any external stimulus, showing high monomer selectivity and kinetic control. The proposed mechanism is based on NMR, in-situ FTIR, SEC, MALDI-ToF, reactivity ratios, and kinetics studies.


2019 ◽  
Author(s):  
Jenna Franke ◽  
Benjamin Raliski ◽  
Steven Boggess ◽  
Divya Natesan ◽  
Evan Koretsky ◽  
...  

Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based voltage-sensitive fluorophores. The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.


2020 ◽  
Vol 24 (20) ◽  
pp. 2341-2355
Author(s):  
Thaipparambil Aneeja ◽  
Sankaran Radhika ◽  
Mohan Neetha ◽  
Gopinathan Anilkumar

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


Sign in / Sign up

Export Citation Format

Share Document