scholarly journals Effects of polymannuronate on performance, antioxidant capacity, immune status, cecal microflora, and volatile fatty acids in broiler chickens

2015 ◽  
Vol 94 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Wenhui Zhu ◽  
Defa Li ◽  
Jianhong Wang ◽  
Hui Wu ◽  
Xuan Xia ◽  
...  
2000 ◽  
Vol 66 (6) ◽  
pp. 2536-2540 ◽  
Author(s):  
Paul W. J. J. van der Wielen ◽  
Steef Biesterveld ◽  
Servé Notermans ◽  
Harm Hofstra ◽  
Bert A. P. Urlings ◽  
...  

ABSTRACT It is known that volatile fatty acids can inhibit growth of species of the family Enterobacteriaceae in vitro. However, whether these volatile fatty acids affect bacterial populations in the ceca of chickens is unknown. Therefore, a study was conducted to investigate if changes in volatile fatty acids in ceca of broiler chickens during growth affect bacterial populations. Results showed that members of theEnterobacteriaceae and enterococci are present in large numbers in 3-day-old broilers and start to decrease when broilers grow older. Lactobacilli are present in large numbers as well in 3-day-old broilers, but they remain stable during the growth of broilers. Acetate, butyrate, and propionate increase from undetectable levels in 1-day-old broilers to high concentrations in 15-day-old broilers, after which they stabilize. Significant negative correlations could be calculated between numbers of Enterobacteriaceae and concentrations of undissociated acetate, propionate, and butyrate. Furthermore, pure cultures of Enterobacteriaceae isolated from the ceca were grown in the presence of volatile fatty acids. Growth rates and maximal optical density decreased when these strains grew in the presence of increasing volatile fatty acid concentrations. It is concluded that volatile fatty acids are responsible for the reduction in numbers of Enterobacteriaceae in the ceca of broiler chickens during growth.


2020 ◽  
Vol 124 (9) ◽  
pp. 903-911 ◽  
Author(s):  
Yufei Zhu ◽  
Shizhao Li ◽  
Yulan Duan ◽  
Zhouzheng Ren ◽  
Xin Yang ◽  
...  

AbstractThis study aimed to evaluate the effect of in ovo feeding (IOF) of vitamin C at embryonic age 11 (E11) on post-hatch performance, immune status and DNA methylation-related gene expression in broiler chickens. A total of 240 Arbor Acres breeder eggs (63 (sem 0·5) g) were randomly divided into two groups: normal saline and vitamin C (VC) groups. After incubation, newly hatched chicks from each group were randomly divided into six replicates with ten chicks per replicate. Hatchability, average daily feed intake (D21–42 and D1–42), and average daily gain and feed conversion ratio (D1–21) were improved by vitamin C treatment (P < 0·05). IOF of vitamin C increased vitamin C content (D1), total antioxidant capacity (D42), IgA (D1), IgM (D1 and D21), stimulation index for T lymphocyte (D35) and lysozyme activity (D21) in plasma (P < 0·05). On D21, vitamin C increased the splenic expression of IL-4 and DNMT1 and decreased IL-1β, Tet2, Tet3 and Gadd45β expression (P < 0·05). On D42, vitamin C increased the splenic expression of IL-4 and DNMT3A and decreased IFN-γ, Tet3, MBD4 and TDG expression (P < 0·05). In conclusion, the vitamin C via in ovo injection can be absorbed by broiler’s embryo and IOF of vitamin C at E11 improves the post-hatch performance and immune status and, to some extent, the antioxidant capacity of broiler chickens. The expression of enzyme-related DNA methylation and demethylation indicates that the level of DNA methylation may increase in spleen in the VC group and whether the fluctuating expression of pro- and anti-inflammatory cytokines is related to DNA methylation change remained to be further investigated.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Yoo-Bhin Kim ◽  
Sang-Hyeok Lee ◽  
Da-Hye Kim ◽  
Hyun-Gwan Lee ◽  
Yongjun Choi ◽  
...  

The present study was conducted to investigate the comparative effects of organic and inorganic forms of sulfur, methyl sulfonyl methane (MSM) and sodium sulfate (SS), on laying performance, egg quality, ileal morphology, ileal volatile fatty acids, and antioxidant and stress markers in various biological samples in aged laying hens. A total of 144, 73-week-old Lohman Brown-Lite laying hens were randomly assigned to one of three experimental diets: basal diet (CONT), CONT + 0.2% MSM (MSM), and CONT + 0.3% SS (SS). The trial lasted for 12 weeks. MSM and SS diets contained 0.07% of sulfur, either organic or inorganic. Dietary MSM did not affect egg production or feed conversion ratio at 12 weeks compared with the CONT group. Dietary sulfur did not affect egg quality except for the Haugh unit at 4 weeks, which was lowered (p < 0.05) in the SS group. Compared with the CONT group, a higher (p < 0.05) villus height to crypt depth ratio was observed in the SS group. Dietary sulfur did not affect the percentages of short-chain fatty acids in the ileum. Total antioxidant capacity of the liver increased (p < 0.05) in laying hens fed MSM- and SS-added diets compared with the CONT group. The MSM and SS groups were found to have lowered (p < 0.05) malondialdehyde (MDA) concentration in serum samples compared with CONT. Finally, dietary MSM had the lowest (p < 0.05) MDA concentrations in yolk samples. Taken together, our study showed that dietary organic and inorganic sulfur have positive effects on ileal morphology and antioxidant capacity in laying hens. However, SS-mediated inhibition in laying performance needs to be clarified.


Author(s):  
Yoo Bhin Kim ◽  
Sang Hyeok Lee ◽  
Da-Hye Kim ◽  
Hyun-Gwan Lee ◽  
Yongjun Choi ◽  
...  

The present study was conducted to investigate the comparative effects of organic and inorganic forms of sulfur, methyl sulfonyl methane (MSM) and sodium sulfate (SS), on laying performance, egg quality, ileal morphology, ileal volatile fatty acids, and antioxidant and stress markers in various biological samples in aged laying hens. A total of 144, 73-week-old Lohman Brown-Lite laying hens were randomly assigned to one of three experimental diets: basal diet (CONT), CONT + 0.2% MSM (MSM), and CONT + 0.3% SS (SS). The trial lasted for 12 weeks. MSM and SS groups contained 0.07% of sulfur, either organic or inorganic. Dietary MSM did not affect egg production and feed conversion ratio at 12 weeks compared with the CONT group. Dietary sulfur did not affect egg quality except for Haugh unit at 4 weeks which was lowered (P &amp;lt; 0.05) in the SS group. Compared with the CONT group, higher (P &amp;lt; 0.05) villus height and crypt depth ratio was observed in the SS group. None of dietary sulfur affected the percentages of short-chain fatty acids in the ileum. Total antioxidant capacity of liver increased (P &amp;lt; 0.05) in laying hens fed MSM- and SS-added diets compared with the CONT group. The MSM and SS groups lowered (P &amp;lt; 0.05) malondialdehyde (MDA) concentration in serum samples compared with the CONT. Finally, dietary MSM had the lowest (P &amp;lt; 0.05) MDA concentrations in yolk samples. Taken together, our study showed that dietary organic and inorganic sulfur have positive effects on ileal morphology and antioxidant capacity in laying hens. However, SS-mediated inhibition in laying performance needs to be clarified.


2001 ◽  
Vol 67 (4) ◽  
pp. 1979-1982 ◽  
Author(s):  
Paul W. J. J. van der Wielen ◽  
Steef Biesterveld ◽  
Len J. A. Lipman ◽  
Frans van Knapen

ABSTRACT The effects of concentrations of volatile fatty acids on an anaerobic, glucose-limited, and pH-controlled growing culture ofSalmonella enterica serovar Enteritidis were studied. Suddenly increasing volatile fatty acids to the concentrations representative of the ceca of 15-day-old broiler chickens caused washout of serovar Enteritidis. In contrast, a sudden increase to the volatile fatty acid concentrations representative of the ceca of younger broiler chickens caused a reduction in the biomass but not washout. Gradually increasing volatile fatty acids caused a gradual decrease in the biomass of serovar Enteritidis. We conclude that the concentrations of volatile fatty acids present in the ceca of broilers with a mature microflora can cause washout of serovar Enteritidis in an in vitro system mimicking cecal ecophysiology.


2018 ◽  
Vol 18 (2) ◽  
pp. 483-500 ◽  
Author(s):  
Witold Szczurek ◽  
Mohamed Nabil Alloui ◽  
Damian Józefiak

AbstractThe principal goal of this study was to assess the responses of broiler chickens raised on floor litter to the 2% dietary level of lactose (LAC) originating from dried whey fed in combination with live culture of Lactobacillus agilis bacteria (90 million cells/kg diet) in terms of the performance and basic postslaughter parameters, the lumen pH in some alimentary tract segments, concentration of volatile fatty acids (VFA ) in the total (T) and undissociated (UD) forms and count of selected microbial populations in the caeca determined by fluorescent in-situ hybridisation (FISH). A parallel aim was to evaluate the outcomes from the combined supplementation in comparison with feeding of LAC and the L. agilis bacteria as separate dietary supplements. Six hundred and forty Ross 308 chickens were placed in 16 floor pens (40 birds per pen having equal sex ratio) and were provided with free access to the feed (a mash maize-wheat-soybean meal-based diet) and water. Dietary treatments provided from day 8 to 42 of age were: LAC-free basal diet (CON), LAC-containing diet (CON + LAC), LAC-free diet with the addition of L. agilis (CON + BAC) and LAC-containing diet with addition of L. agilis (CON + LAC + BAC). The LAC supplementation caused significant decreases in the luminal pH of the crop, ileum and caeca, and the addition of the L. agilis bacteria reduced the pH in the crop and caeca. The overall concentration of total (T) volatile fatty acids was higher in the caeca of broilers receiving the LAC-containing diets. Both the LAC and the BAC supplements, independently from one another, resulted in significantly greater caecal levels of UD acetate, propionate and butyrate. The FISH analysis revealed that counts of Bacteroides sp./Prevotella sp. group were higher after the inclusion of LAC in the feed. All three dietary supplementations significantly reduced the total counts of the family Enterobacteriaceae and decreased the number of naturally occurring C. perfringens bacteria compared with the basal control diet (CON). Neither LAC inclusion nor BAC addition to the diet affected the counts of the Clostridium coccoides/Eubacterium rectale group. The synergistic effects of the simultaneous supplementation of LAC and L. agilis were found on the T butyrate concentration and on C. perfringens and the Enterobacteriaceae counts. No improvements in the body weight gains and post-slaughter traits were observed due to uncombined and combined supplementation with 2% LAC and L. agilis, indicating that the shifts in composition of the caecal microbiota toward a healthier composition by using these additives were not large enough to create the positive growth rate and processing yields responses in broilers maintained in a litter-floor environment.


Sign in / Sign up

Export Citation Format

Share Document