scholarly journals Novel Layered and 2D Materials for Functionality Enhancement of Contacts and Gas Sensors

2016 ◽  
Author(s):  
Hossein Fashandi
Keyword(s):  
2021 ◽  
Author(s):  
Yi Xia ◽  
Sufang He ◽  
Mingjun Wang ◽  
Liexing Zhou ◽  
Jing Wang ◽  
...  

OPTOELECTRONIC GAS SENSORS BASED ON TWO-DIMENSIONAL (2D) MATERIALS ARE TOUTED AS POTENTIAL CANDIDATES FOR NO2 SENSING AT ROOM TEMPERATURE. HOWEVER, MOST OF THE DEVELOPED OPTOELECTRONIC SENSORS TO DATE ARE CONFINED...


Author(s):  
Parthasarathy Srinivasan ◽  
Soumadri Samanta ◽  
Akshay Krishnakumar ◽  
John Bosco Balaguru Rayappan ◽  
Kamalakannan Kailasam

Over the past decades, many materials like metal oxides, conducting polymers, carbon nanotubes, 2D materials, graphene, zeolites and porous organic frameworks (MOFs and COFs) have been explored for chemo-sensing applications...


Author(s):  
Zhuo Liu ◽  
He Lv ◽  
Ying Xie ◽  
Jue Wang ◽  
Jiahui Fan ◽  
...  

The very diverse two-dimensional (2D) materials have bloomed in NO2 gas sensing application that provide new opportunities and challenges in function oriented gas sensors. In this work, a 2D/2D/2D structure...


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6694
Author(s):  
Maria Vesna Nikolic ◽  
Vladimir Milovanovic ◽  
Zorka Z. Vasiljevic ◽  
Zoran Stamenkovic

This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.


2022 ◽  
Vol 423 ◽  
pp. 127148
Author(s):  
Hsu-Sheng Tsai ◽  
You Wang ◽  
Chaoming Liu ◽  
Tianqi Wang ◽  
Mingxue Huo

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-25 ◽  
Author(s):  
Max C. Lemme ◽  
Stefan Wagner ◽  
Kangho Lee ◽  
Xuge Fan ◽  
Gerard J. Verbiest ◽  
...  

The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.


2020 ◽  
Author(s):  
jiamu cao ◽  
jing zhou ◽  
jianing shi ◽  
yufeng zhang ◽  
junyu chen ◽  
...  

Abstract Owing to their harmful and polluting the environment, nitrogen oxides and sulfur dioxide are expected to monitor when they are used. However, the widespread use of gas sensing methods presents obstacles in terms of portability or stability. Hence, a better detect way needs to be found urgently. The success of graphene-based gas sensors has stimulated interest in two-dimensional (2D) materials in the gas sensing area. Transition metal dichalcogenides (TMDs), such as MoS2 or WS2, are considered to have the high-performance potential for gas sensors. Unfortunately, when used as a gas sensor, the sensing response of the pristine TMDs is greatly affected by a number of gas molecules that are too weak to be detected. Herein, to evaluate the sensing capability of Al, P, and Fe-doped WS2 to NO, NO2, and SO2, the molecular model of the adsorption systems was constructed, and density functional theory (DFT) was used to calculate the adsorption behavior of these gases. The binding force of all the doped-WS2 to the harmful gas molecules is much stronger than that of the pristine WS2. According to the results of adsorption energy, band structure, and state density, Al-doped WS2 has the potential to be used as NO and SO2 gas sensor, while P-doped WS2 is selective to NO. This work opens up a new reference for choosing appropriate doping types on 2D materials for noxious gas sensing.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2020 ◽  
Author(s):  
Aleksandra Radenovic
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document