scholarly journals Study of the Effect of Relative Permeability and Residual oil Saturation on Oil Recovery

Author(s):  
Mahesh Ediriweera ◽  
Britt M. Halvorsen
SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 481-496 ◽  
Author(s):  
Pål Østebø Andersen

Summary Many experimental studies have investigated smart water and low-salinity waterflooding and observed significant incremental oil recovery after changes in the injected-brine composition. The common approach to model such enhanced-oil-recovery (EOR) mechanisms is by shifting the input relative permeability curves, particularly including a reduction of the residual oil saturation. Cores that originally display oil-wetness can retain much oil at the outlet of the flooded core because of the capillary pressure being zero at a high oil saturation. This end effect is difficult to overcome in highly permeable cores at typical laboratory rates. Injecting a brine that changes the wetting state to less-oil-wet conditions (represented by zero capillary pressure at a lower oil saturation) will lead to a release of oil previously trapped at the outlet. Although this is chemically induced incremental oil, it represents a reduction of remaining oil saturation, not necessarily of residual oil saturation. This paper illustrates the mentioned issues of interpreting the difference in remaining and residual oil saturation during chemical EOR and hence the evaluation of potential smart water effects. We present a mathematical model representing coreflooding that accounts for wettability changes caused by changes in the injected composition. For purpose of illustration, this is performed in terms of adsorption of a wettability-alteration (WA) component coupled to the shifting of relative permeability curves and capillary pressure curves. The model is parameterized in accordance with experimental data by matching brine-dependent saturation functions to experiments where wettability alteration takes place dynamically because of the changing of one chemical component. It is seen that several effects can give an apparent smart water effect without having any real reduction of the residual oil saturation, including changes in the mobility ratio, where the oil already flowing is pushed more efficiently, and the magnitude of capillary end effects can be reduced because of increased water-wetness or because of a reduction in water relative permeability giving a greater viscous drag on the oil.


2021 ◽  
Author(s):  
Prakash Purswani ◽  
Russell T. Johns ◽  
Zuleima T. Karpyn

Abstract The relationship between residual saturation and wettability is critical for modeling enhanced oil recovery (EOR) processes. The wetting state of a core is often quantified through Amott indices, which are estimated from the ratio of the saturation fraction that flows spontaneously to the total saturation change that occurs due to spontaneous flow and forced injection. Coreflooding experiments have shown that residual oil saturation trends against wettability indices typically show a minimum around mixed-wet conditions. Amott indices, however, provides an average measure of wettability (contact angle), which are intrinsically dependent on a variety of factors such as the initial oil saturation, aging conditions, etc. Thus, the use of Amott indices could potentially cloud the observed trends of residual saturation with wettability. Using pore network modeling (PNM), we show that residual oil saturation varies monotonically with the contact angle, which is a direct measure of wettability. That is, for fixed initial oil saturation, the residual oil saturation decreases monotonically as the reservoir becomes more water-wet (decreasing contact angle). Further, calculation of Amott indices for the PNM data sets show that a plot of the residual oil saturation versus Amott indices also shows this monotonic trend, but only if the initial oil saturation is kept fixed. Thus, for the cases presented here, we show that there is no minimum residual saturation at mixed-wet conditions as wettability changes. This can have important implications for low salinity waterflooding or other EOR processes where wettability is altered.


2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


1998 ◽  
Author(s):  
J.T. Edwards ◽  
M.M. Honarpour ◽  
R.D. Hazlett ◽  
M. Cohen ◽  
A. Membere ◽  
...  

1983 ◽  
Vol 23 (03) ◽  
pp. 417-426 ◽  
Author(s):  
Philip J. Closmann ◽  
Richard D. Seba

Abstract This paper presents results of laboratory experiments conducted to determine the effect of various parameters on residual oil saturation from steamdrives of heavy-oil reservoirs. These experiments indicated that remaining oil saturation, both at steam breakthrough and after passage of several PV of steam, is a function of oil/water viscosity ratio at saturated steam conditions. Introduction Considerable attention has been given to thermal techniques for stimulating production of underground hydrocarbons, particularly the more viscous oils production of underground hydrocarbons, particularly the more viscous oils and tars. Steam injection has been studied as one means of heating oil in place, reducing its viscosity, and thus making its displacement easier. place, reducing its viscosity, and thus making its displacement easier. A number of investigators have measured residual oil saturations remaining in the steam zone. Willman et al. also analyzed the steam displacement process to account for the oil recoveries observed. A number of methods have been developed to calculate the size of the steam zone and to predict oil recoveries by application of Buckley-Leverett theory, including the use of numerical simulation. The work described here was devoted to an experimental determination of oil recovery by steam injection in linear systems. The experiments were unscaled as far as fluid flow rates, gravity forces, and heat losses were concerned. Part of the study was to determine recoveries of naturally occurring very viscous tars in a suite of cores containing their original oil saturation. The cores numbered 95, 140, and 143 are a part of this group. Heterogeneities in these cores, however, led to the extension of the work to more uniform systems, such as sandpacks and Dalton sandstone cores. Our interest was in obtaining an overall view of important variables that affected recovery. In particular, because of the significant effect of steam distillation, most of the oils used in this study were chosen to avoid this factor. We also studied the effect of pore size on the residual oil saturation. As part of this work, we investigated the effect of the amount of water flushed through the system ahead of the steam front in several ways:the production rate was varied by a factor of four,the initial oil saturation was varied by a factor of two, andthe rate of heat loss was varied by removing the heat insulation from the flow system. Description of Apparatus and Experimental Technique Two types of systems were studied: unconsolidated sand and consolidated sandstone. The former type was provided by packing a section of pipe with 50–70 mesh Ottawa sand. Most runs on this type of system were in an 18-in. (45.72-cm) section of 1 1/2 -in. (3.8 1 -cm) diameter pipe, although runs on 6-in. (15.24-cm) and 5-ft (152.4-cm) lengths were also included. Consolidated cores 9 to 13 in. (22.86 to 33.02 cm) long and approximately 2 1/4 in. (5.72 cm) in diameter were sealed in a piece of metal pipe by means of an Epon/sand mixture. A photograph of two 9-in. (22.86-cm) consolidated natural cores (marked 95 and 143) from southwest Missouri, containing original oil, is shown as Fig. 1. In all steamdrive runs, the core was thermally insulated to reduce heat loss, unless the effect of heat loss was specifically being studied. Flow was usually horizontal except for the runs in which the effects of flushing water volume and of unconsolidated-sand pore size were examined. Micalex end pieces were used on the inlet end in initial experiments with consolidated cores to reduce heat leakage from the steam line to the metal jacket on the outside of the core. During most runs, however, the entire input assembly eventually became hot. SPEJ p. 417


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Emad Waleed Al-Shalabi ◽  
Kamy Sepehrnoori ◽  
Gary Pope

Low salinity water injection (LSWI) is gaining popularity as an improved oil recovery technique in both secondary and tertiary injection modes. The objective of this paper is to investigate the main mechanisms behind the LSWI effect on oil recovery from carbonates through history-matching of a recently published coreflood. This paper includes a description of the seawater cycle match and two proposed methods to history-match the LSWI cycles using the UTCHEM simulator. The sensitivity of residual oil saturation, capillary pressure curve, and relative permeability parameters (endpoints and Corey’s exponents) on LSWI is evaluated in this work. Results showed that wettability alteration is still believed to be the main contributor to the LSWI effect on oil recovery in carbonates through successfully history matching both oil recovery and pressure drop data. Moreover, tuning residual oil saturation and relative permeability parameters including endpoints and exponents is essential for a good data match. Also, the incremental oil recovery obtained by LSWI is mainly controlled by oil relative permeability parameters rather than water relative permeability parameters. The findings of this paper help to gain more insight into this uncertain IOR technique and propose a mechanistic model for oil recovery predictions.


1975 ◽  
Vol 15 (05) ◽  
pp. 376-384 ◽  
Author(s):  
R.M. Weinbrandt ◽  
H.J. Ramey ◽  
F.J. Casse

MEMBERS SPE-AIME Abstract Equipment was constructed to perform dynamic displacement experiments on small core samples under conditions of elevated temperature. Oil-water flowing fraction and pressure drop were recorded continuously for calculation of both the relative permeability ratio and the individual relative permeability ratio and the individual relative permeabilities. Imbibition relative permeabilities permeabilities. Imbibition relative permeabilities were measured for five samples of Boise sandstone at room temperature and at 175deg.F. The fluids used were distilled water and a white mineral oil. The effect of temperature on absolute permeability was investigated for six Boise sandstone samples and two Berea sandstone samples. Results for all samples were similar. The irreducible water saturation increased significantly, while the residual oil saturation decreased significantly with temperature increase. The individual relative permeability to oil increased for all water saturations below the room-temperature residual oil saturation, but the relative permeability to water at flood-out increased with permeability to water at flood-out increased with temperature increase. Absolute permeability decreased with temperature increase. Introduction Test environment is generally acknowledged to have a significant effect on measurement of relative permeability. The environment consists not only permeability. The environment consists not only of the temperature and pressure, but also of the fluids used and the core condition. Several workers have used the approach of completely simulating the reservoir conditions in the laboratory experiment. Such methods are termed "restored state." Restored state data are generally different from "room condition" data; since several variables are involved, it is difficult to determine the importance of each variable. Another approach used attributes the changes in relative permeability to changes in the rock-fluid interaction or wettability. Wettability, however, depends on many variables. Specifically, wettability depends on the composition of the rock surface, the composition of the fluids, the saturation history of the rock surface, and the temperature and pressure of the system. The purpose of this study is to isolate temperature as a variable in the relative permeability of a given rock-fluid system. Work on isolation of temperature as a variable in relative permeability has been conducted since the early 1960s. Edmondsons established results in 1965 for a Berea sandstone core using both water/refined oil and water/crude oil as fluid pairs. He showed a change in the relative permeability ratio accompanied by a decrease in the residual oil saturation with temperature increase. Edmondson showed no data for water saturations below 40 percent, and his curves show considerable scatter in the middle saturation ranges. Edmondson's work was the only study to use consolidated cores to investigate the effect of temperature on relative permeability measurements. Poston et al. presented waterflood data for sand packs containing 80-, 99-, a nd 600-cp oil, and packs containing 80-, 99-, a nd 600-cp oil, and observed an increase in the individual relative permeabilities with temperature increase. The permeabilities with temperature increase. The increase in the oil and the water permeability was accompanied by an increase in irreducible water saturation and a decrease in the residual oil saturation with temperature increase. Poston et al. was the only work to present individual oil and water permeability. Davidsons presented results for displacement of No. 15 white oil from a sand pack by distilled water, steam, or nitrogen. However, he found little permeability-ratio dependence in the middle permeability-ratio dependence in the middle saturation ranges. Davidson, too, found a decrease in the residual oil saturation with temperature increase, but he did not include data on irreducible water saturation. SPEJ P. 376


Sign in / Sign up

Export Citation Format

Share Document