scholarly journals Morphology and Mechanical Properties of Plantar Fascia in Flexible Flatfoot: A Noninvasive In Vivo Study

Author(s):  
Zhihui Qian ◽  
Zhende Jiang ◽  
Jianan Wu ◽  
Fei Chang ◽  
Jing Liu ◽  
...  

Plantar fascia plays an important role in human foot biomechanics; however, the morphology and mechanical properties of plantar fascia in patients with flexible flatfoot are unknown. In this study, 15 flexible flatfeet were studied, each plantar fascia was divided into 12 positions, and the morphologies and mechanical properties in the 12 positions were measured in vivo with B-mode ultrasound and shear wave elastography (SWE). Peak pressures under the first to fifth metatarsal heads (MH) were measured with FreeStep. Statistical analysis included 95% confidence interval, intragroup correlation coefficient (ICC1,1), one-way analysis of variance (one-way ANOVA), and least significant difference. The results showed that thickness and Young’s modulus of plantar fascia were the largest at the proximal fascia (PF) and decreased gradually from the proximal end to the distal end. Among the five distal branches (DB) of the fascia, the thickness and Young’s modulus of the second and third DB were larger. The peak pressures were also higher under the second and third MH. This study found a gradient distribution in that the thickness and Young’s modulus gradient decreased from the proximal end to the distal end of plantar fascia in the longitudinal arch of flexible flatfeet. In the transverse arch, the thickness and Young’s modulus under the second and third DB were larger than those under the other three DB in flexible flatfoot, and the peak pressures under the second and third MH were also larger than those under the other three MH in patients with flexible flatfoot. These findings deepen our understanding of the changes of biomechanical properties and may be meaningful for the study of pathological mechanisms and therapy for flexible flatfoot.

2006 ◽  
Vol 975 ◽  
Author(s):  
Andrei Stanishevsky ◽  
Shafiul Chowdhury ◽  
Nathaniel Greenstein ◽  
Helene Yockell-Lelievre ◽  
Jari Koskinen

ABSTRACTThe hydroxyapatite (HA) based bioceramic materials are usually prepared at high sintering temperatures to attain suitable mechanical properties. The sintering process usually results in a material which is compositionally and morphologically different from nonstoichiometric nano-crystalline HA phase of hard tissue. At the same time, HA particulates used as precursors in ceramic manufacturing are often very similar to the natural HA nanocrystals. It has been shown that synthetic nanoparticle HA (nanoHA) based materials improve the biological response in vitro and in vivo, but the information on mechanical properties of these materials is scarce.In this work we studied the HA nanoparticle (10 – 80 nm mean size) coatings with 30 – 70% porosity prepared by a dip-coating technique on Ti and TiN substrates. It has been found that the mechanical properties of HA nanoparticle coatings are strongly influenced by the initial size, morphology, and surface treatment of nanoparticles. The nanoindentation Young's modulus and hardness of as–deposited nanoHA coatings were in the range of 2.5 – 6.9 GPa and 80 – 230 MPa, respectively. The coatings were stable after annealing up to at least 600 °C, reaching the Young's modulus up to 23 GPa and hardness up to 540 MPa, as well as in simulated body fluids.


Holzforschung ◽  
2002 ◽  
Vol 56 (6) ◽  
pp. 639-647 ◽  
Author(s):  
W. P. Abasolo ◽  
H. Yamamoto ◽  
M. Yoshida ◽  
K. Mitsui ◽  
T. Okuyama

Summary The influence of heat and loading time on the mechanical properties of Calamus merrillii Becc. was evaluated by measurement of dynamic Young's modulus and creep compliance at different temperature settings. Young's modulus decreased steadily as temperature was elevated. Creep compliance, on the other hand, increased steadily with loading time, similar to wood. Compliance rates were more or less the same at all temperature settings except for one particular temperature which deviated extremely from the rest. This temperature indirectly represents the softening temperature. Reduction in strength caused by heat was highly influenced by the cellular composition of the stem as well as the sensitivity of its basic chemical constituents, e.g., hemicellulose content, to heat. Knowing this basic behavior of rattan stems will enable manufacturers to design rattan products more efficiently.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248346
Author(s):  
Tomoya Inoue ◽  
Keiichi Kanda ◽  
Masashi Yamanami ◽  
Daisuke Kami ◽  
Satoshi Gojo ◽  
...  

In vivo tissue-engineered vascular grafts constructed in the subcutaneous spaces of graft recipients have functioned well clinically. Because the formation of vascular graft tissues depends on several recipient conditions, chemical pretreatments, such as dehydration by ethanol (ET) or crosslinking by glutaraldehyde (GA), have been attempted to improve the initial mechanical durability of the tissues. Here, we compared the effects of short-duration (10 min) chemical treatments on the mechanical properties of tissues. Tubular tissues (internal diameter, 5 mm) constructed in the subcutaneous tissues of beagle dogs (4 weeks, n = 3), were classified into three groups: raw tissue without any treatment (RAW), tissue dehydrated with 70% ET (ET), and tissue crosslinked with 0.6% GA (GA). Five mechanical parameters were measured: burst pressure, suture retention strength, ultimate tensile strength (UTS), ultimate strain (%), and Young’s modulus. The tissues were also autologously re-embedded into the subcutaneous spaces of the same dogs for 4 weeks (n = 2) for the evaluation of histological responses. The burst pressure of the RAW group (1275.9 ± 254.0 mm Hg) was significantly lower than those of ET (2115.1 ± 262.2 mm Hg, p = 0.0298) and GA (2570.5 ± 282.6 mm Hg, p = 0.0017) groups. Suture retention strength, UTS or the ultimate strain did not differ significantly among the groups. Young’s modulus of the ET group was the highest (RAW: 5.41 ± 1.16 MPa, ET: 12.28 ± 2.55 MPa, GA: 7.65 ± 1.18 MPa, p = 0.0185). No significant inflammatory tissue response or evidence of residual chemical toxicity was observed in samples implanted subcutaneously for four weeks. Therefore, short-duration ET and GA treatment might improve surgical handling and the mechanical properties of in vivo tissue-engineered vascular tissues to produce ideal grafts in terms of mechanical properties without interfering with histological responses.


2017 ◽  
Vol 898 ◽  
pp. 1318-1324 ◽  
Author(s):  
Y. Zhao ◽  
Jian Xiao ◽  
S.J. Chen

This paper presents an investigation on the microstructure and mechanical property of Al-alloy parts made by using additive manufacturing based on CMT (Cold Metal Transfer) welding technology. With the same 3D model and process parameters, a set of hollow cylindrical parts with 100 layers were built up using 2319, 4043, 5356 aluminum welding wires, respectively. Then their microstructure, tensile strength, and microhardness were tested and analyzed comparatively. The layer bands characteristics were obviously observed in both 2319 and 4043 parts. In the interlayer region of the 2319 parts, the segregation of alloying elements on the grain boundaries and inside the grains were significantly more than that in the fusion line region. For the microstructure of 4043 parts, the dendrites grow upward from the bottom without interruption in the fusion line region, and the continuous growth structure was maintained. There is no obviously change on the microhardness from the bottom to the top because the organization is uniform and there is no significant difference in the grain size. The ultimate strength and elongation in the horizontal direction were higher than those in the longitudinal direction, and the 5356 parts had best mechanical properties among the three materials. Ultrasonic method was also used to measure the Young's modulus of the additive manufactured parts. The Young's modulus measuring results were accordant with the results obtained by the mechanical property testing, and the error was within 3%.


2011 ◽  
Vol 11 (01) ◽  
pp. 221-230 ◽  
Author(s):  
LAURA MILLARD ◽  
DANIEL M. ESPINO ◽  
DUNCAN E. T. SHEPHERD ◽  
DAVID W. L. HUKINS ◽  
KEITH G. BUCHAN

Young's modulus and structural stiffness were determined for chordae tendineae of the mitral valve from young (18–26 weeks) and old (over 2 years) porcine hearts. For chordae from the posterior leaflet of the valve, the Young's modulus values were significantly higher (p < 0.05) for the thinner marginal chordae (59 ± 31 MPa young; 88 ± 21 MPa old) than for the thicker basal chordae (31 ± 4 MPa young; 28 ± 9 MPa old). Marginal chordae (both anterior and posterior) had significantly higher (p < 0.05) value for their Young's modulus in old (88 ± 21 MPa anterior and posterior) than in young (62 ± 17 MPa anterior, 59 ± 18 MPa posterior) pig hearts. There was no significant difference in structural stiffness between marginal and basal (anterior and posterior leaflets) or between strut chordae (that are associated with anterior the leaflet only) and marginal and basal chordae. However, the value of structural stiffness of chordae was significantly higher (p < 0.05) for old (2.2 ± 0.2 kN/m) than for young (2.0 ± 0.4 kN/m) chordae. These results show that aging affects the properties of chordae and that all chordae need to be included in finite element models of valve function.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 53641-53649 ◽  
Author(s):  
Kunyang Wang ◽  
Jing Liu ◽  
Jianan Wu ◽  
Zhihui Qian ◽  
Luquan Ren ◽  
...  

1996 ◽  
Vol 118 (1) ◽  
pp. 56-61 ◽  
Author(s):  
C. W. Smith ◽  
I. S. Young ◽  
J. N. Kearney

Tendon allografts are commonly used to replace damaged anterior cruciate ligaments (ACL). Some of the sterilization and preservation techniques used by tissue banks with tendon allografts are thought to impair the mechanical properties of graft tissues. The tensile mechanical properties of porcine toe extensor tendons were measured using a dynamic testing machine following either freezing, freeze-drying, freezing then irradiation at 25 kGy (2.5 MRad), freeze-drying then irradiation, or freeze-drying then ethylene oxide gas sterilization. There was a small but significant difference in Young’s modulus between the frozen group (0.88 GPa ± 0.09 SD) and both the fresh group (0.98 GPa ± 0.12 SD) and the frozen irradiated group (0.97 GPa ± 0.08 SD). No values of Young’s modulus were obtained for the freeze-dried irradiated tendons. The ultimate tensile stress (UTS) of the freeze-dried irradiated group (4.7 MPa ± 4.8 SD) was significantly different from both the fresh and the frozen irradiated groups, being reduced by approximately 90 percent. There were no significant changes in UTS or Young’s modulus between any of the other groups. If irradiation is to be used to sterilize a tendon replacement for an ACL it must take place after freeze-drying to maintain mechanical properties.


1980 ◽  
Vol 269 (3) ◽  
pp. 221-232 ◽  
Author(s):  
P. G. Agache ◽  
C. Monneur ◽  
J. L. Leveque ◽  
J. De Rigal

Author(s):  
Bijan Golkhani ◽  
Anna Weber ◽  
Ludger Keilig ◽  
Susanne Reimann ◽  
Christoph Bourauel

Abstract Objective Investigate and compare the mechanical properties of different aligner materials before and after deep drawing and determine differences in the mechanical properties after thermoforming. Materials and methods Four aligner film sheets from three manufacturers (Duran Plus® [Scheu Dental, Iserlohn, Germany]; Zendura® [ClearCorrect, Bay Materials LLC, Fremont, CA, USA]; Essix ACE® and Essix® PLUS™ [Dentsply Sirona Deutschland, Bensheim, Germany]) were tested in 3‑point bending with support distances of 8, 16, and 24 mm. Dimension of the specimens was 10 × 50 mm2. Two groups each were tested: (1) 10 specimens were investigated in the as-received state (before thermoforming), (2) 10 specimens were deep drawn on a master plate with cuboids of the dimension 10 × 10 × 50 mm3. Then, specimens were cut out of the upper side and lateral walls and were measured in 3‑point bending. Forces and reduction in thickness were measured and corrected theoretical forces of drawn sheets after thickness reduction as well as Young’s modulus were calculated. Results At a support distance of 8 mm and a displacement of 0.25 mm Essix® PLUS™, having the highest thickness in untreated state, showed highest forces of 28.2 N, followed by Duran Plus® (27.3 N), Essix ACE® (21.0 N) and Zendura® (19.7 N). Similar results were registered for the other distances (16, 24 mm). Thermoforming drastically reduced thickness and forces in the bending tests. Forces decreased to around 10% or less for specimens cut from the lateral walls. Young’s modulus decreased significantly for deep drawn foil sheets, especially for Essix® PLUS™. Conclusions Three-point bending is an appropriate method to compare different foil sheet materials. Young’s modulus is significantly affected by thermoforming.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Po-Jen Shih ◽  
Chun-Ju Huang ◽  
Tzu-Han Huang ◽  
Hung-Chou Lin ◽  
Jia-Yush Yen ◽  
...  

Current intraocular pressure (IOP) measurement using air puff could be erroneous without applying proper corrections. Although noncontact tonometry is not considered to be accurate, it is still popularly used by eye clinics. It is thus necessary to extract the correct information from their results. This study proposes a practical approach to correctly measure IOPin vivo. By embedding a new model-based correction to the Corvis® ST, we can extract the corneal Young’s modulus from the patient data. This Young’s modulus can be used to correct the IOP readings. The tests were applied to 536 right eyes of 536 healthy subjects (228 male and 308 female) between March of 2012 and April of 2016. The tests were applied to patients at the Department of Ophthalmology, National Taiwan University Hospital and the Hung-Chuo Eye Clinics. The statistical analysis showed that the value for the Young’s modulus was independent of all the other parameters collected from the Corvis ST, including the corneal thickness and the intraocular pressure. Therefore, it is important to independently measure the Young’s modulus instead of depending on the correlation with the other parameters. This study adds the methodology of measuring corneal stiffnessin vivofor ophthalmologists’ reference in diagnosis.


Sign in / Sign up

Export Citation Format

Share Document