Mechanical properties and Young's modulus of human skin in vivo

1980 ◽  
Vol 269 (3) ◽  
pp. 221-232 ◽  
Author(s):  
P. G. Agache ◽  
C. Monneur ◽  
J. L. Leveque ◽  
J. De Rigal
2006 ◽  
Vol 975 ◽  
Author(s):  
Andrei Stanishevsky ◽  
Shafiul Chowdhury ◽  
Nathaniel Greenstein ◽  
Helene Yockell-Lelievre ◽  
Jari Koskinen

ABSTRACTThe hydroxyapatite (HA) based bioceramic materials are usually prepared at high sintering temperatures to attain suitable mechanical properties. The sintering process usually results in a material which is compositionally and morphologically different from nonstoichiometric nano-crystalline HA phase of hard tissue. At the same time, HA particulates used as precursors in ceramic manufacturing are often very similar to the natural HA nanocrystals. It has been shown that synthetic nanoparticle HA (nanoHA) based materials improve the biological response in vitro and in vivo, but the information on mechanical properties of these materials is scarce.In this work we studied the HA nanoparticle (10 – 80 nm mean size) coatings with 30 – 70% porosity prepared by a dip-coating technique on Ti and TiN substrates. It has been found that the mechanical properties of HA nanoparticle coatings are strongly influenced by the initial size, morphology, and surface treatment of nanoparticles. The nanoindentation Young's modulus and hardness of as–deposited nanoHA coatings were in the range of 2.5 – 6.9 GPa and 80 – 230 MPa, respectively. The coatings were stable after annealing up to at least 600 °C, reaching the Young's modulus up to 23 GPa and hardness up to 540 MPa, as well as in simulated body fluids.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248346
Author(s):  
Tomoya Inoue ◽  
Keiichi Kanda ◽  
Masashi Yamanami ◽  
Daisuke Kami ◽  
Satoshi Gojo ◽  
...  

In vivo tissue-engineered vascular grafts constructed in the subcutaneous spaces of graft recipients have functioned well clinically. Because the formation of vascular graft tissues depends on several recipient conditions, chemical pretreatments, such as dehydration by ethanol (ET) or crosslinking by glutaraldehyde (GA), have been attempted to improve the initial mechanical durability of the tissues. Here, we compared the effects of short-duration (10 min) chemical treatments on the mechanical properties of tissues. Tubular tissues (internal diameter, 5 mm) constructed in the subcutaneous tissues of beagle dogs (4 weeks, n = 3), were classified into three groups: raw tissue without any treatment (RAW), tissue dehydrated with 70% ET (ET), and tissue crosslinked with 0.6% GA (GA). Five mechanical parameters were measured: burst pressure, suture retention strength, ultimate tensile strength (UTS), ultimate strain (%), and Young’s modulus. The tissues were also autologously re-embedded into the subcutaneous spaces of the same dogs for 4 weeks (n = 2) for the evaluation of histological responses. The burst pressure of the RAW group (1275.9 ± 254.0 mm Hg) was significantly lower than those of ET (2115.1 ± 262.2 mm Hg, p = 0.0298) and GA (2570.5 ± 282.6 mm Hg, p = 0.0017) groups. Suture retention strength, UTS or the ultimate strain did not differ significantly among the groups. Young’s modulus of the ET group was the highest (RAW: 5.41 ± 1.16 MPa, ET: 12.28 ± 2.55 MPa, GA: 7.65 ± 1.18 MPa, p = 0.0185). No significant inflammatory tissue response or evidence of residual chemical toxicity was observed in samples implanted subcutaneously for four weeks. Therefore, short-duration ET and GA treatment might improve surgical handling and the mechanical properties of in vivo tissue-engineered vascular tissues to produce ideal grafts in terms of mechanical properties without interfering with histological responses.


Author(s):  
Zhihui Qian ◽  
Zhende Jiang ◽  
Jianan Wu ◽  
Fei Chang ◽  
Jing Liu ◽  
...  

Plantar fascia plays an important role in human foot biomechanics; however, the morphology and mechanical properties of plantar fascia in patients with flexible flatfoot are unknown. In this study, 15 flexible flatfeet were studied, each plantar fascia was divided into 12 positions, and the morphologies and mechanical properties in the 12 positions were measured in vivo with B-mode ultrasound and shear wave elastography (SWE). Peak pressures under the first to fifth metatarsal heads (MH) were measured with FreeStep. Statistical analysis included 95% confidence interval, intragroup correlation coefficient (ICC1,1), one-way analysis of variance (one-way ANOVA), and least significant difference. The results showed that thickness and Young’s modulus of plantar fascia were the largest at the proximal fascia (PF) and decreased gradually from the proximal end to the distal end. Among the five distal branches (DB) of the fascia, the thickness and Young’s modulus of the second and third DB were larger. The peak pressures were also higher under the second and third MH. This study found a gradient distribution in that the thickness and Young’s modulus gradient decreased from the proximal end to the distal end of plantar fascia in the longitudinal arch of flexible flatfeet. In the transverse arch, the thickness and Young’s modulus under the second and third DB were larger than those under the other three DB in flexible flatfoot, and the peak pressures under the second and third MH were also larger than those under the other three MH in patients with flexible flatfoot. These findings deepen our understanding of the changes of biomechanical properties and may be meaningful for the study of pathological mechanisms and therapy for flexible flatfoot.


2012 ◽  
Vol 112 (3) ◽  
pp. 419-426 ◽  
Author(s):  
René B. Svensson ◽  
Philip Hansen ◽  
Tue Hassenkam ◽  
Bjarki T. Haraldsson ◽  
Per Aagaard ◽  
...  

Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons ( n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


Sign in / Sign up

Export Citation Format

Share Document