scholarly journals Validation of an Echidna Forelimb Musculoskeletal Model Using XROMM and diceCT

Author(s):  
Sophie Regnault ◽  
Philip Fahn-Lai ◽  
Stephanie E. Pierce

In evolutionary biomechanics, musculoskeletal computer models of extant and extinct taxa are often used to estimate joint range of motion (ROM) and muscle moment arms (MMAs), two parameters which form the basis of functional inferences. However, relatively few experimental studies have been performed to validate model outputs. Previously, we built a model of the short-beaked echidna (Tachyglossus aculeatus) forelimb using a traditional modelling workflow, and in this study we evaluate its behaviour and outputs using experimental data. The echidna is an unusual animal representing an edge-case for model validation: it uses a unique form of sprawling locomotion, and possesses a suite of derived anatomical features, in addition to other features reminiscent of extinct early relatives of mammals. Here we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) alongside digital and traditional dissection to evaluate muscle attachments, modelled muscle paths, and the effects of model alterations on the MMA outputs. We use X-ray Reconstruction of Moving Morphology (XROMM) to compare ex vivo joint ROM to model estimates based on osteological limits predicted via single-axis rotation, and to calculate experimental MMAs from implanted muscles using a novel geometric method. We also add additional levels of model detail, in the form of muscle architecture, to evaluate how muscle torque might alter the inferences made from MMAs alone, as is typical in evolutionary studies. Our study identifies several key findings that can be applied to future models. 1) A light-touch approach to model building can generate reasonably accurate muscle paths, and small alterations in attachment site seem to have minimal effects on model output. 2) Simultaneous movement through multiple degrees of freedom, including rotations and translation at joints, are necessary to ensure full joint ROM is captured; however, single-axis ROM can provide a reasonable approximation of mobility depending on the modelling objectives. 3) Our geometric method of calculating MMAs is consistent with model-predicted MMAs calculated via partial velocity, and is a potentially useful tool for others to create and validate musculoskeletal models. 4) Inclusion of muscle architecture data can change some functional inferences, but in many cases reinforced conclusions based on MMA alone.

1973 ◽  
Vol 54 ◽  
pp. 173-221
Author(s):  
J. C. Pecker

Regardless of the degree of elaboration of series of models, just how can they be used for calibration purposes? And how much is this calibration sensitive to the quality of the model theory? These two questions are the basis of our discussion, which covers : I – The general principles of the use of model atmospheres in stellar calibration (1 – The two dimensional classifications; 2 – The use of the total luminosity; 3 – The cases of Vega and Sirius; 4 – The calibration of ST – Teff relation); II – The failures of the two parameters model atmospheres (1 – The observational need for more-than-two-parameters classification; 2 – The abundance of elements, the line formation, and the model atmospheres; 3 – Various sources of unadequacy of models; 4 – Envelopes or shell features; their influence on model-building; 5 – The case of HD 45677. Diagnostic of early-type stars; 6 – Various unexplained spectral features); III – The present state of the model factory (1 – The classical models; 2 – New concepts in the description of a stellar atmosphere; 3 – New approaches in model making; 4 – Conclusions).


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Hua Wang ◽  
Xiaoyan Zhang ◽  
Shauna M. Dorsey ◽  
Jeremy R. McGarvey ◽  
Kenneth S. Campbell ◽  
...  

Myocardial contractility of the left ventricle (LV) plays an essential role in maintaining normal pump function. A recent ex vivo experimental study showed that cardiomyocyte force generation varies across the three myocardial layers of the LV wall. However, the in vivo distribution of myocardial contractile force is still unclear. The current study was designed to investigate the in vivo transmural distribution of myocardial contractility using a noninvasive computational approach. For this purpose, four cases with different transmural distributions of maximum isometric tension (Tmax) and/or reference sarcomere length (lR) were tested with animal-specific finite element (FE) models, in combination with magnetic resonance imaging (MRI), pressure catheterization, and numerical optimization. Results of the current study showed that the best fit with in vivo MRI-derived deformation was obtained when Tmax assumed different values in the subendocardium, midmyocardium, and subepicardium with transmurally varying lR. These results are consistent with recent ex vivo experimental studies, which showed that the midmyocardium produces more contractile force than the other transmural layers. The systolic strain calculated from the best-fit FE model was in good agreement with MRI data. Therefore, the proposed noninvasive approach has the capability to predict the transmural distribution of myocardial contractility. Moreover, FE models with a nonuniform distribution of myocardial contractility could provide a better representation of LV function and be used to investigate the effects of transmural changes due to heart disease.


Author(s):  
Emanuele Roccia ◽  
Marco G. Genoni ◽  
Luca Mancino ◽  
Ilaria Gianani ◽  
Marco Barbieri ◽  
...  

AbstractThe physics that governs quantum monitoring may involve other degrees of freedom than the ones initialised and controlled for probing. In this context we address the simultaneous estimation of phase and dephasing characterizing a dispersive medium, and we explore the role of frequency correlations within a photon pair generated via parametric down-conversion, when used as a probe for the medium. We derive the ultimate quantum limits on the estimation of the two parameters, by calculating the corresponding quantum Cramér-Rao bound; we then consider a feasible estimation scheme, based on the measurement of Stokes operators, and address its absolute performances in terms of the correlation parameters, and, more fundamentally, of the role played by correlations in the simultaneous achievability of the quantum Cramér- Rao bounds for each of the two parameters.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3537
Author(s):  
Christian Friedrich ◽  
Steffen Ihlenfeldt

Integrated single-axis force sensors allow an accurate and cost-efficient force measurement in 6 degrees of freedom for hexapod structures and kinematics. Depending on the sensor placement, the measurement is affected by internal forces that need to be compensated for by a measurement model. Since the parameters of the model can change during machine usage, a fast and easy calibration procedure is requested. This work studies parameter identification procedures for force measurement models on the example of a rigid hexapod-based end-effector. First, measurement and identification models are presented and parameter sensitivities are analysed. Next, two excitation strategies are applied and discussed: identification from quasi-static poses and identification from accelerated continuous trajectories. Both poses and trajectories are optimized by different criteria and evaluated in comparison. Finally, the procedures are validated by experimental studies with reference payloads. In conclusion, both strategies allow accurate parameter identification within a fast procedure in an operational machine state.


2017 ◽  
Author(s):  
Yalong Dang ◽  
Susannah Waxman ◽  
Chao Wang ◽  
Adrianna Jensen ◽  
Ralitsa T Loewen ◽  
...  

Objective: Trabecular meshwork (TM) is the primary substrate of outflow resistance in glaucomatous eyes. Repopulating diseased TM with fresh, functional TM cells might represent a novel therapeutic breakthrough. Various decellularized TM scaffolds were developed by ablating existing cells with suicide gene therapy or saponin, but always with incomplete cell removal or dissolve the extracellular matrix. We hypothesized that a chemical-free, freeze-thaw method would be able to produce a fully decellularized TM scaffold for cell transplantation. Materials and Methods: We obtained 24 porcine eyes from a local abattoir, dissected and mounted them in an anterior segment perfusion and pressure transduction system within two hours of sacrifice. After they stabilized for 72 hours, eight eyes each were assigned to freeze-thaw (F) ablation (-80°C×2), to 0.02% saponin (S) treatment, or the control group (C), respectively. The trabecular meshwork was transduced with an eGFP expressing feline immunodeficiency viral (FIV) vector and tracked via fluorescent microscopy to confirm ablation. Following treatment, the eyes were perfused with standard tissue culture medium for 180 hours. We assessed histological changes by hematoxylin and eosin staining. TM cell viability was evaluated with a calcein AM/propidium iodide (PI) assay. We measured IOP and modeled it with a linear mixed effects model using a B-spline function of time with 5 degrees of freedom. Results: F and S experienced a similar IOP reduction by 30% from baseline (P=0.64). IOP reduction of about 30% occurred in F within 24 hours and in S within 48 hours. Live visualization of eGFP demonstrated that F conferred a complete ablation of all TM cells and only a partial ablation in S. Histological analysis confirmed that no TM cells survived in F while the extracellular matrix remained. The viability assay showed very low PI and no calcein staining in F in contrast to numerous PI-labeled dead TM cells and calcein-labeled viable TM cells in S. Conclusion: We developed a rapid TM ablation method that uses cyclic freezing that is free of biological or chemical agents and able to produce a decellularized TM scaffold with preserved TM excellular matrix in an organotypic perfusion culture.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850005 ◽  
Author(s):  
Yeong-Geol Bae ◽  
Seul Jung

This paper presents the balancing control performance of a mobile manipulator built in the laboratory as a service robot called Korean robot worker (KOBOKER). The robot is designed and implemented with two wheels as a mobile base and two arms with six degrees-of-freedom each. Kinematics and dynamics of the robot are analyzed. For the balancing control performance, two wheels are controlled independently by the time-delayed control method based on the inertia model of the robot. The acceleration information obtained directly from the sensor is used for the modified disturbance observer structure called an acceleration-based disturbance observer (AbDOB). Experimental studies of the balancing control of the robot are conducted to compare the control performances by both a PID control method and an AbDOB.


Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2661-2667
Author(s):  
J Mysliwietz ◽  
S Thierfelder

Abstract A hamster antimouse CD3 monoclonal antibody (MoAb) opened the way to experimental studies on the suppression of allograft rejection and cytokine-related morbidity after treatment with antibodies modulating the CD3/T-cell receptor complex (CD3/TCR). Because earlier attempts to suppress graft-versus-host disease (GVHD) in patients by in vitro treatment of donor marrow with anti-CD3 MoAb had remained inconclusive, we used a rat IgG2b antimouse CD3 MoAb (17A2) with fewer side effects to analyze suppression of GVHD in the mouse model. Detailed phenotyping of blood, spleen, and lymphnode T cells after the injection of 400 micrograms 17A2 in C57BL/6 mice showed 60% CD3 downmodulation and 50% T- cell depletion for spleen cells. Injection of these spleen cells, together with bone marrow cells, in fully mismatched preirradiated CBA mice delayed GVHD by only 6 days. Ex vivo treatment of donor cells with 17A2 was not effective. In contrast, conditioning of marrow recipients with a single injection of 17A2 delayed 50% GVHD mortality by 100 days and prevented GVHD altogether after prolonged treatment, with survivors showing complete chimerism and specific transplantation tolerance. This difference in antibody effect contrasts with earlier experiences with nonmodulating but more strongly T-cell-depleting MoAbs of the same isotype, which prevent GVHD no matter whether applied in vitro or injected into donor or recipient mice. Our data indicate that CD3/TCR reexpression in marrow recipients with no circulating 17A2 is the reason why ex vivo donor cell treatment with anti-CD3 MoAb is comparatively ineffective. Our data, which allow separate evaluation of cell-depleting and cell-modulating antibody activity, help to explain previous clinical failure to suppress GVHD and provide evidence in favor of conditioning the marrow recipient with anti-CD3 MoAb as a therapeutic alternative.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 834 ◽  
Author(s):  
Vytautas Jūrėnas ◽  
Gražvydas Kazokaitis ◽  
Dalius Mažeika

A novel design of a multiple degrees of freedom (multi-DOF) piezoelectric ultrasonic motor (USM) is presented in the paper. The main idea of the motor design is to combine the magnetic sphere type rotor and two oppositely placed ring-shaped piezoelectric actuators into one mechanism. Such a structure increases impact force and allows rotation of the sphere with higher torque. The main purpose of USM development was to design a motor for attitude control systems used in small satellites. A permanent magnetic sphere with a magnetic dipole is used for orientation and positioning when the sphere is rotated to the desired position and the magnetic field synchronizes with the Earth’s magnetic dipole. Also, the proposed motor can be installed and used for robotic systems, laser beam manipulation, etc. The system has a minimal number of components, small weight, and high reliability. Numerical simulation and experimental studies were used to verify the operating principles of the USM. Numerical simulation of a piezoelectric actuator was used to perform modal frequency and harmonic response analysis. Experimental studies were performed to measure both mechanical and electrical characteristics of the piezoelectric motor.


2014 ◽  
Vol 70 (a1) ◽  
pp. C178-C178
Author(s):  
Carola Müller ◽  
Sven Lidin

Sometimes, model building in crystallography is like resolving a puzzle: All obvious symmetrical or methodological errors are excluded, you apparently understand the measured patterns in 3D, but the structure solution and/or refinement is just not working. One such nerve-stretching problem arises from metrically commensurate structures (MCS). This expression means that the observed values of the components of the modulation wave vectors are rational by chance and not because of a lock-in. Hence, it is not a superstructure - although the boundaries between the two descriptions are blurry. Using a superstructure model for a MCS decreases the degrees of freedom, and forces the atomic arrangement to an artificial state of ordering. Just imagine it as looking at a freeze frame from a movie instead of watching the whole film. The consequences in structure solution and refinement of MCS are not always as dramatically as stated in the beginning. On the contrary, treating a superstructure like a MCS might be a worthwhile idea. Converting from a superstructure model to a superspace model may lead to a substantial decrease in the number of parameters needed to model the structure. Further, it can permit for the refinement of parameters that the paucity of data does not allow in a conventional description. However, it is well known that families of superstructures can be described elegantly by the use of superspace models that collectively treat a whole range of structures, commensurate and incommensurate. Nevertheless, practical complications in the refinement are not uncommon. Instances are overlapping satellites from different orders and parameter correlations. Notably, MCS occur in intermetallic compounds that are important for the performance of next-generation electronic devices. Based on examples of their (pseudo)hexagonal 3+1D and 3+2D structures, we will discuss the detection and occurrence of MCS as well as the benefits and limitations of implementing them artificially.


2018 ◽  
Vol 44 (2) ◽  
pp. E13 ◽  
Author(s):  
Goutam Ghoshal ◽  
Lucy Gee ◽  
Tamas Heffter ◽  
Emery Williams ◽  
Corinne Bromfield ◽  
...  

OBJECTIVEMinimally invasive procedures may allow surgeons to avoid conventional open surgical procedures for certain neurological disorders. This paper describes the iterative process for development of a catheter-based ultrasound thermal therapy applicator.METHODSUsing an ultrasound applicator with an array of longitudinally stacked and angularly sectored tubular transducers within a catheter, the authors conducted experimental studies in porcine liver, in vivo and ex vivo, in order to characterize the device performance and lesion patterns. In addition, they applied the technique in a rodent model of Parkinson’s disease to investigate the feasibility of its application in brain.RESULTSThermal lesions with multiple shapes and sizes were readily achieved in porcine liver. The feasibility of catheter-based focused ultrasound in the treatment of brain conditions was demonstrated in a rodent model of Parkinson’s disease.CONCLUSIONSThe authors show proof of principle of a catheter-based ultrasound system that can create lesions with concurrent thermode-based measurements.


Sign in / Sign up

Export Citation Format

Share Document