scholarly journals Gold Nanoparticles Augment N-Terminal Cleavage and Splicing Reactions in Mycobacterium tuberculosis SufB

Author(s):  
Ananya Nanda ◽  
Sourya Subhra Nasker ◽  
Anoop K. Kushwaha ◽  
Deepak Kumar Ojha ◽  
Albert K. Dearden ◽  
...  

Protein splicing is a self-catalyzed event where the intervening sequence intein cleaves off, joining the flanking exteins together to generate a functional protein. Attempts have been made to regulate the splicing rate through variations in temperature, pH, and metals. Although metal-regulated protein splicing has been more captivating to researchers, metals were shown to only inhibit splicing reactions that confine their application. This is the first study to show the effect of nanoparticles (NPs) on protein splicing. We found that gold nanoparticles (AuNPs) of various sizes can increase the splicing efficiency by more than 50% and the N-terminal cleavage efficiency by more than 45% in Mycobacterium tuberculosis SufB precursor protein. This study provides an effective strategy for engineering splicing-enhanced intein platforms. UV-vis absorption spectroscopy, isothermal titration calorimetry (ITC), and transmission electron microscopy (TEM) confirmed AuNP interaction with the native protein. Quantum mechanics/molecular mechanics (QM/MM) analysis suggested a significant reduction in the energy barrier at the N-terminal cleavage site in the presence of gold atom, strengthening our experimental evidence on heightened the N-terminal cleavage reaction. The encouraging observation of enhanced N-terminal cleavage and splicing reaction can have potential implementations from developing a rapid drug delivery system to designing a contemporary protein purification system.

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 132
Author(s):  
Jumoke A. Aboyewa ◽  
Nicole R. S. Sibuyi ◽  
Mervin Meyer ◽  
Oluwafemi O. Oguntibeju

Cyclopia intermedia (C. intermedia) is an indigenous South African shrub used to prepare the popular medicinal honeybush (HB) tea. This plant contains high levels of mangiferin (MGF), a xanthonoid that was reported to have numerous biological activities, including anti-tumor activity. MGF and extracts that contain high concentrations of MGF, such as extracts from Mangifera indica L. or mango have been used to synthesize gold nanoparticles (AuNPs) using green nanotechnology. It has previously been shown that when AuNPs synthesized from M. indica L. extracts are used in combination with doxorubicin (DOX) and Ayurvedic medicine, the anti-tumor effects appear to be augmented. It has also been demonstrated that MGF used in combination with DOX resulted in enhanced anti-tumor effects. In this study, C. intermedia (HB) and MGF were used to synthesize HB-AuNPs and MGF-AuNPs, respectively. The physicochemical properties of the AuNPs were characterized by the UV-Visible Spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HR-TEM). The cytotoxicity of HB-AuNPs and MGF-AuNPs were assessed on human colon (Caco-2), prostate (PC-3) and glioblastoma (U87) cancer cells; as well as normal breast epithelial (MCF-12A) cells using the MTT assay. Both HB-AuNPs and MGF-AuNPs demonstrated relatively low cytotoxicity in these cells. However, when these nanoparticles were used in combination with DOX, the cytotoxicity of DOX was significantly augmented.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Beomjin Kim ◽  
Woo Chang Song ◽  
Sun Young Park ◽  
Geuntae Park

The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


2015 ◽  
Vol 1115 ◽  
pp. 386-389
Author(s):  
Haroon Haiza ◽  
I.I. Yaacob ◽  
Ahmad Zahirani Ahmad Azhar

Colloidal gold nanoparticles have been successfully prepared using a simple two-electrode cells connected to a DC power supply. During the electro-dissolution-reduction process, the bulk gold at the anode oxidized into gold cations which then reacted with the chloride ions to form aurochloride complex. The complex ions were then reduced by the citrate ion to form colloidal gold nanoparticles. The size and shape of the nanoparticles were modulated by varying the terminal voltages. The colloidal gold nanoparticles obtained were characterized by field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and ultraviolet-visible spectrophotometer (UV-Vis). From FESEM analysis, it was found that by increasing the voltage, the size of colloidal gold nanoparticles produced marginally decreased. The mean sizes of gold nanoparticles were roughly about 23.5 nm, 23.2 nm and 19.3 nm for 32 V, 36 V and 40 V, respectively. TEM micrograph showed that the shape of gold nanoparticles obtained is almost spherical. The characteristic peaks of UV-Vis spectra revealed that the suspension was indeed colloidal gold nanoparticles. Keywords: Gold, Nanoparticles, Electro-dissolution-reduction


Nanomedicine ◽  
2021 ◽  
Author(s):  
Pragya Prasanna ◽  
Prakash Kumar ◽  
Saptarshi Mandal ◽  
Tanvi Payal ◽  
Saurabh Kumar ◽  
...  

Aim: To analyze the efficacy and possible mechanism of action of 7,8-dihydroxyflavone (DHF) and DHF synthesized gold nanoparticles (GNPs) against the parasite Leishmania donovani. Methods: GNPs were synthesized using DHF and characterized by dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction. The efficacy of DHF and DHF-GNP were tested against sensitive and drug-resistant parasites. GNP uptake was measured on macrophages by atomic absorption spectroscopy. Results: DHF and DHF-GNP (∼35 nm) were equally effective against sensitive and drug-resistant strains and inhibited the arginase activity of parasites. Increased IFN-γ and reduced IL-12 cytokine response showed a Th1/Th2-mediated cell death in macrophages. Conclusion: The low cytotoxicity and high biological activity of DHF-GNP may be useful for chemotherapy of leishmaniasis.


2021 ◽  
Vol 25 (7) ◽  
pp. 1-7
Author(s):  
Fellyzra Elvya Pojol ◽  
Buong Woei Chieng ◽  
Keat Khim Ong ◽  
Rashid Jahwarhar Izuan Abd ◽  
Mohd Junaedy Osman ◽  
...  

Citrate reduction of gold (III) chloride trihydrate (HAuCl4) is commonly used method to synthesise citrate-capped gold nanoparticles (cit-AuNPs). In this study, the sequence of reagents addition was modified (“inverse” method) to synthesise smaller size of cit-AuNPs than the standard Turkevich method (“direct” method). Ultraviolet-visible spectroscopy (UV-vis) and field emission transmission electron microscopy (FETEM) confirmed the formation of cit-AuNPs. The cit-AuNPs synthesized using “inverse” method are smaller in size (14.0 ± 3.03 nm) with uniform spherical shape compared to “direct” method (23.5 ± 7.52 nm). Smaller particles size of cit-AuNPs provide higher efficiency and sensitivity for detection of methylphosphonic acid (MPA) via colorimetric incorporated with image processing with a linear range from 2.5 to 12.5 mM and a low detection limit of 6.28 mM at shorter detection period (24 to 30 s).


Sign in / Sign up

Export Citation Format

Share Document