scholarly journals Gold Nanoparticles Synthesized Using Extracts of Cyclopia intermedia, Commonly Known as Honeybush, Amplify the Cytotoxic Effects of Doxorubicin

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 132
Author(s):  
Jumoke A. Aboyewa ◽  
Nicole R. S. Sibuyi ◽  
Mervin Meyer ◽  
Oluwafemi O. Oguntibeju

Cyclopia intermedia (C. intermedia) is an indigenous South African shrub used to prepare the popular medicinal honeybush (HB) tea. This plant contains high levels of mangiferin (MGF), a xanthonoid that was reported to have numerous biological activities, including anti-tumor activity. MGF and extracts that contain high concentrations of MGF, such as extracts from Mangifera indica L. or mango have been used to synthesize gold nanoparticles (AuNPs) using green nanotechnology. It has previously been shown that when AuNPs synthesized from M. indica L. extracts are used in combination with doxorubicin (DOX) and Ayurvedic medicine, the anti-tumor effects appear to be augmented. It has also been demonstrated that MGF used in combination with DOX resulted in enhanced anti-tumor effects. In this study, C. intermedia (HB) and MGF were used to synthesize HB-AuNPs and MGF-AuNPs, respectively. The physicochemical properties of the AuNPs were characterized by the UV-Visible Spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HR-TEM). The cytotoxicity of HB-AuNPs and MGF-AuNPs were assessed on human colon (Caco-2), prostate (PC-3) and glioblastoma (U87) cancer cells; as well as normal breast epithelial (MCF-12A) cells using the MTT assay. Both HB-AuNPs and MGF-AuNPs demonstrated relatively low cytotoxicity in these cells. However, when these nanoparticles were used in combination with DOX, the cytotoxicity of DOX was significantly augmented.

Nanomedicine ◽  
2021 ◽  
Author(s):  
Pragya Prasanna ◽  
Prakash Kumar ◽  
Saptarshi Mandal ◽  
Tanvi Payal ◽  
Saurabh Kumar ◽  
...  

Aim: To analyze the efficacy and possible mechanism of action of 7,8-dihydroxyflavone (DHF) and DHF synthesized gold nanoparticles (GNPs) against the parasite Leishmania donovani. Methods: GNPs were synthesized using DHF and characterized by dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction. The efficacy of DHF and DHF-GNP were tested against sensitive and drug-resistant parasites. GNP uptake was measured on macrophages by atomic absorption spectroscopy. Results: DHF and DHF-GNP (∼35 nm) were equally effective against sensitive and drug-resistant strains and inhibited the arginase activity of parasites. Increased IFN-γ and reduced IL-12 cytokine response showed a Th1/Th2-mediated cell death in macrophages. Conclusion: The low cytotoxicity and high biological activity of DHF-GNP may be useful for chemotherapy of leishmaniasis.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


Clay Minerals ◽  
1992 ◽  
Vol 27 (1) ◽  
pp. 35-46 ◽  
Author(s):  
R. Romero ◽  
M. Robert ◽  
F. Elsass ◽  
C. Garcia

AbstractThe soils developed from crystalline and metamorphic rocks in Galicia (NW Spain), are characterized by high concentrations of 1 : 1 phyllosilicates and gels. Thermal analyses, X-ray diffraction after formamide treatment, and IR spectroscopy in the OH vibration range have been performed on the clay fractions, but do not discriminate clearly between the different associated mineralogical phases. HRTEM studies linked with microdiffraction and microanalyses have led to the identification of several types of gel which transform into goethite, gibbsite, clay precursors, and/ or halloysite according to their composition (Fe, Al or Si-Al). Halloysite-like minerals are the main constituents and they have a great variety of morphologies: lamellar, spheroidal, tubular, platy or poikilitic. In general, halloysite and gel formation on crystalline rocks is related to the bioclimatic conditions, involving high hydrolysis in the presence of organic matter. This halloysite seems to be a metastable mineral which would evolve into kaolinite with increasing weathering time.


2011 ◽  
Vol 391-392 ◽  
pp. 400-403
Author(s):  
Dong Mei Zhao ◽  
Li Guo Sun ◽  
Li Li Lv ◽  
Jian Li

Quasi-spherical gold nanoparticles(Au NPs) prepared by trisodium citrate reduction of HAuCl4were dispersed into cellulose acetate(CA) ultra-fine fibers by electrospinning. The optical properties of Au NPs before and after electrospinning were measured by UV-vis spectrometer. The morphology and distribution of Au NPs in CA ultra-fine fibers were observed by transmission electron microscopy (TEM). The morphology and diameter of Au NPs/CA fibers were studied by scanning electron microscopy (SEM). The crystallinity change of CA fiber before and after adding Au NPs was characterized by X-ray diffraction (XRD).


NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550115 ◽  
Author(s):  
Junwei Ding ◽  
Kai Zhang ◽  
Wei Xu ◽  
Zhiqiang Su

Gold core-induced polypyrrole nanohybrids (Au–PPyNHs) were successfully synthesized via in situ chemical oxidation polymerization of pyrrole molecules, and their structure was directly confirmed and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Furthermore, gold nanoparticles (AuNPs) were assembled onto the as-prepared Au–PPyNHs by electrostatic interaction to fabricate the nanohybrids of Au–PPyNH–Au. The created Au–PPyNH–Au nanohybrids was immobilized onto glassy carbon electrode and applied to construct dopamine (DA) sensor. We found that the fabricated sensor with Au–PPyNH–Au nanohybrids is highly specific probe for sensing DA. The Au–PPyNH–Au based DA sensor has a linear detection range from 1[Formula: see text][Formula: see text]M to 0.321 mM and a detection limit of 0.32[Formula: see text][Formula: see text]M.


Author(s):  
E. Romero Torres ◽  
M. Gutiérrez Arzaluz ◽  
V Mugica Alvarez ◽  
L. González Reyes ◽  
M. Torres Rodríguez ◽  
...  

The photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using a Au/TiO2 catalyst and ultraviolet (UV) light energy source (9 mW/cm2) discussed. Gold nanoparticles were synthesized by controlled urea reduction and deposited on titanium dioxide (TiO2) by the deposition-precipitation method. The average size of the nanoparticles was 6-8 nm. X-ray diffraction (XRD) characterization confirmed that TiO2 was present in the anatase phase, whereas the presence and particle size of gold were determined by transmission electron microscopy (TEM). The results of the degradation showed that the activity of TiO2 was improved when Au nanoparticles were present on the surface. The reactions were performed at atmospheric pressure and room temperature.


Author(s):  
Abdulrahman M. Elbagory ◽  
Christopher N. Cupido ◽  
Mervin Meyer ◽  
Ahmed Hussein

The preparation of gold nanoparticles (AuNPs) involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly nanoparticles. One method to achieve this is the use of plant-derived phytochemicals capable of reducing gold ions to produce AuNPs. The aim of this study was to implement a facile microtitre-plate method to screen a large number of aqueous plant extracts to determine the optimum concentration (OC) to bio-synthesize the AuNPs. Several AuNPs of different sizes and shapes were successfully synthesized and characterized from seventeen South African plants. The characterization was done using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy. We also studied the effects of temperature on the synthesis of the nanoparticles and measured its effect on the particle size of the synthesized AuNPs and the data showed that changes in temperatures affect the size and dispersity of the generated AuNPs. Further, some of the synthesized AuNPs were stable upon incubation with different biological solutions in vitro.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 277 ◽  
Author(s):  
Xiangyan Chen ◽  
Xia Zhao ◽  
Yanyun Gao ◽  
Jiaqi Yin ◽  
Mingyue Bai ◽  
...  

Gold nanoparticles (AuNPs) have been widely used in catalysis, photothermal therapy, and targeted drug delivery. Carrageenan oligosaccharide (CAO) derived from marine red algae was used as a reducing and capping agent to obtain AuNPs by an eco-friendly, efficient, and simple synthetic route for the first time. The synthetic conditions of AuNPs were optimized by response surface methodology (RSM), and the CAO-AuNPs obtained were demonstrated to be ellipsoidal, stable and crystalline by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The CAO-AuNPs showed localized surface plasmon resonance (LSPR) oscillation at about 530 nm with a mean diameter of 35 ± 8 nm. The zeta potential of CAO-AuNPs was around −20 mV, which was related to the negatively charged CAO around AuNPs. The CAO-AuNPs exhibited significant cytotoxic activities to HCT-116 and MDA-MB-231 cells, which could be a promising nanomaterial for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document