scholarly journals Functional Trimeric SARS-CoV-2 Envelope Protein Expressed in Stable CHO Cells

Author(s):  
Patrick Mayrhofer ◽  
Monika Hunjadi ◽  
Renate Kunert

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a β-coronavirus, is the causative agent of the COVID-19 pandemic. One of the three membrane-bound envelope proteins is the spike protein (S), the one responsible for docking to the cellular surface protein ACE2 enabling infection with SARS-CoV-2. Although the structure of the S-protein has distinct similarities to other viral envelope proteins, robust and straightforward protocols for recombinant expression and purification are not described in the literature. Therefore, most studies are done with truncated versions of the protein, like the receptor-binding domain. To learn more about the interaction of the virus with the ACE2 and other cell surface proteins, it is mandatory to provide recombinant spike protein in high structural quality and adequate quantity. Additional mutant variants will give new insights on virus assembly, infection mechanism, and therapeutic drug development. Here, we describe the development of a recombinant CHO cell line stably expressing the extracellular domain of a trimeric variant of the SARS CoV-2 spike protein and discuss significant parameters to be considered during the expression and purification process.

2008 ◽  
Vol 89 (8) ◽  
pp. 1866-1872 ◽  
Author(s):  
Zhe Zhao ◽  
Fei Ke ◽  
You-Hua Huang ◽  
Jiu-Gang Zhao ◽  
Jian-Fang Gui ◽  
...  

Viral envelope proteins have been proposed to play significant roles in virus infection and assembly. In this study, an envelope protein gene, 53R, was cloned and characterized from Rana grylio virus (RGV), a member of the family Iridoviridae. Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed several conserved structural features shared by virus capsid or envelope proteins: a myristoylation site, two predicted transmembrane domains and two invariant cysteine residues. Subsequently, RT-PCR and Western blot detection revealed that the transcripts encoding RGV 53R and the protein itself appeared late during infection of fathead minnow cells and that their appearance was blocked by viral DNA replication inhibitor, indicating that RGV 53R is a late expression gene. Moreover, immunofluorescence localization found an association of 53R with virus factories in RGV-infected cells, and this association was further confirmed by expressing a 53R–GFP fusion protein in pEGFP-N3/53R-transfected cells. Furthermore, detergent extraction and Western blot detection confirmed that RGV 53R was associated with virion membrane. Therefore, the current data suggest that RGV 53R is a novel viral envelope protein and that it may play an important role in virus assembly. This is thought to be the first report on a viral envelope protein that is conserved in all sequenced iridoviruses.


2010 ◽  
Vol 84 (15) ◽  
pp. 7847-7856 ◽  
Author(s):  
Olga Dolnik ◽  
Larissa Kolesnikova ◽  
Lea Stevermann ◽  
Stephan Becker

ABSTRACT The nucleoprotein NP of Marburg virus (MARV) is the major component of the viral nucleocapsid, which also consists of the viral proteins VP35, L, and VP30, as well as the viral genome. During virus assembly at the plasma membrane, the nucleocapsids are enwrapped by the major matrix protein VP40 and the viral envelope, which contains the transmembrane glycoprotein GP. Upon recombinant expression, VP40 alone is able to induce the formation and release of virus-like particles (VLPs) that closely resemble the filamentous morphology of MARV particles. Release of these VP40-induced VLPs is partially dependent on the cellular ESCRT machinery, which interacts with a late-domain motif in VP40. Coexpression with NP significantly enhances the budding of VP40-induced VLPs by an unknown mechanism. In the present study we analyzed the impact of late domains present in NP on the release of VLPs. We observed that the ESCRT I protein Tsg101 was recruited by NP into NP-induced inclusions in the perinuclear region. In the presence of VP40, NP was then recruited to VP40-positive membrane clusters and, in turn, recruited Tsg101 via a C-terminal PSAP late-domain motif in NP. This PSAP motif also mediated a dramatically enhanced incorporation of Tsg101 into VLPs, and its deletion significantly diminished the positive effect of NP on the release of VLPs. Taken together, these data indicate that NP enhances budding of VLPs by recruiting Tsg101 to the VP40-positive budding site through a PSAP late-domain motif.


2003 ◽  
Vol 77 (4) ◽  
pp. 2784-2788 ◽  
Author(s):  
Dae-Yeon Cho ◽  
Gi-Hyeok Yang ◽  
Chun Jeih Ryu ◽  
Hyo Jeong Hong

ABSTRACT The proper folding and assembly of viral envelope proteins are mediated by host chaperones. In this study, we demonstrated that an endoplasmic reticulum luminal chaperone GRP78/BiP bound specifically to the pre-S1 domain of the L protein in vitro and in vivo where complete viral particles were secreted, suggesting that GRP78/BiP plays an essential role in the proper folding of the L protein and/or assembly of viral envelope proteins.


2018 ◽  
Vol 00 (00) ◽  
pp. 0-0
Author(s):  
Dongdong Li ◽  
Dongdong Li ◽  
Tai An ◽  
Xiao Liu ◽  
Bin Yin ◽  
...  

2000 ◽  
Vol 278 (6) ◽  
pp. H2008-H2019 ◽  
Author(s):  
Anna Babinska ◽  
Michael V. Hogan ◽  
Tomasz Sobocki ◽  
Malgorzata B. Sobocka ◽  
Yigal H. Ehrlich ◽  
...  

Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[α32P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[α32P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca2+flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


2004 ◽  
Vol 78 (6) ◽  
pp. 2994-3002 ◽  
Author(s):  
Anne Op De Beeck ◽  
Cécile Voisset ◽  
Birke Bartosch ◽  
Yann Ciczora ◽  
Laurence Cocquerel ◽  
...  

ABSTRACT Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.


2012 ◽  
Vol 87 (3) ◽  
pp. 1658-1663 ◽  
Author(s):  
Marco A. Díaz-Salinas ◽  
Pedro Romero ◽  
Rafaela Espinosa ◽  
Yasutaka Hoshino ◽  
Susana López ◽  
...  

ABSTRACTRotaviruses are internalized into MA104 cells by endocytosis, with different endocytic pathways used depending on the virus strain. The bovine rotavirus UK strain enters cells through a clathrin-mediated endocytic process, while the simian rhesus rotavirus (RRV) strain uses a poorly defined endocytic pathway that is clathrin and caveolin independent. The viral surface protein VP7 and the spike protein VP4 interact with cellular receptors during cell binding and penetration. To determine the viral protein that defines the mechanism of internalization, we used a panel of UK × RRV reassortant viruses having different combinations of the viral structural proteins. Characterization of the infectivities of these reassortants in MA104 cells either transfected with a small interfering RNA (siRNA) against the heavy chain of clathrin or incubated with hypertonic medium that destabilizes the clathrin coat clearly showed that VP4 determines the pathway of virus entry. Of interest, the characterization of Nar3, a sialic acid-independent variant of RRV, showed that a single amino acid change in VP4 shifts the route of entry from being clathrin dependent to clathrin independent. Furthermore, characterizations of several additional rotavirus strains that differ in their use of cellular receptors showed that all entered cells by clathrin-mediated endocytosis, suggesting that diverse VP4-cell surface interactions can lead to rotavirus cell entry through this endocytic pathway.


1997 ◽  
Vol 322 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Philemon PAPANASTASIOU ◽  
Malcolm J. McCONVILLE ◽  
Julie RALTON ◽  
Peter KÖHLER

The variant-specific surface proteins (VSPs) of the ancient protist Giardia duodenalis(syn.: Giardia intestinalis, Giardia lamblia) are cysteine- and threonine-rich polypeptides that can vary considerably in sequence and size. In the present study, we have purified a VSP (VSP4A1, formerly called CRISP-90) from a cloned Giardiaisolate, derived from a sheep, by Triton X-114 phase partitioning and anion-exchange chromatography. Analysis of the purified VSP4A1 showed that this protein is post-translationally modified with both glycans and lipid. The glycans of VSP4A1 were detected and partially characterized by (1) compositional analysis, which indicated the presence of GlcNAc and Glc (0.5 and 1.0 mol/mol of protein respectively), and (2) the specific labelling of VSP4A1 with galactosyltransferase/UDP-[3H]Gal. The glycans were released by β-elimination, suggesting that they are O-linked to the protein. Bio-Gel P4 chromatography of the released galactosylated glycans and further compositional analysis suggested that the major glycan on the VSP is a trisaccharide with Glc at the reducing terminus. These and other results indicate the absence of any N-linked glycans on the VSP and suggest instead that it is elaborated with a novel type of short O-linked glycan. Compositional analysis and radiolabelling experiments also indicated that VSP4A1 is modified with covalently linked palmitate (1 mol/mol of protein). Hydroxylamine treatment at neutral pH of [3H]palmitate-labelled VSP4A1 indicated that the acyl chain may be attached by a thioester linkage. A likely location for the lipid modification appears to be in the region of the C-terminal domain where it may facilitate association of the protein with the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document