scholarly journals Senescence in Bacteria and Its Underlying Mechanisms

Author(s):  
Ulrich Karl Steiner

Bacteria have been thought to flee senescence by dividing into two identical daughter cells, but this notion of immortality has changed over the last two decades. Asymmetry between the resulting daughter cells after binary fission is revealed in physiological function, cell growth, and survival probabilities and is expected from theoretical understanding. Since the discovery of senescence in morphologically identical but physiologically asymmetric dividing bacteria, the mechanisms of bacteria aging have been explored across levels of biological organization. Quantitative investigations are heavily biased toward Escherichia coli and on the role of inclusion bodies—clusters of misfolded proteins. Despite intensive efforts to date, it is not evident if and how inclusion bodies, a phenotype linked to the loss of proteostasis and one of the consequences of a chain of reactions triggered by reactive oxygen species, contribute to senescence in bacteria. Recent findings in bacteria question that inclusion bodies are only deleterious, illustrated by fitness advantages of cells holding inclusion bodies under varying environmental conditions. The contributions of other hallmarks of aging, identified for metazoans, remain elusive. For instance, genomic instability appears to be age independent, epigenetic alterations might be little age specific, and other hallmarks do not play a major role in bacteria systems. What is surprising is that, on the one hand, classical senescence patterns, such as an early exponential increase in mortality followed by late age mortality plateaus, are found, but, on the other hand, identifying mechanisms that link to these patterns is challenging. Senescence patterns are sensitive to environmental conditions and to genetic background, even within species, which suggests diverse evolutionary selective forces on senescence that go beyond generalized expectations of classical evolutionary theories of aging. Given the molecular tool kits available in bacteria, the high control of experimental conditions, the high-throughput data collection using microfluidic systems, and the ease of life cell imaging of fluorescently marked transcription, translation, and proteomic dynamics, in combination with the simple demographics of growth, division, and mortality of bacteria, make the challenges surprising. The diversity of mechanisms and patterns revealed and their environmental dependencies not only present challenges but also open exciting opportunities for the discovery and deeper understanding of aging and its mechanisms, maybe beyond bacteria and aging.

2021 ◽  
Author(s):  
Dheeraj Kanaparthi ◽  
Marko Lampe ◽  
Baoli Zhu ◽  
Andreas Klingl ◽  
Tillmann Lueders ◽  
...  

Protocells are thought to have existed on early Earth before the origin of prokaryotes. These primitive cells are believed to have carried out processes like replication solely based on the physicochemical properties of their cell constituents. Despite considerable efforts, replication of a living cell-driven entirely by laws of physics and chemistry has never been achieved. To test this hypothesis, we transformed extant bacteria into sacks of cytoplasm, incapable of regulating either their morphology or reproductive processes. We then exposed these proxy-protocells (bacterial protoplasts) to presumed Archaean Eon environmental conditions to understand if or how these cells reproduce. Contrary to the current presumption that bacterial protoplasts reproduce in a haphazard manner, under our experimental conditions they reproduced via a multi-stage reproductive cycle, resulting in viable daughter cells. Our observations suggest that this mechanism of reproduction could in fact be well explained from a biophysical perspective. Based on our observations we argue that this method of reproduction is better suited for the environmental conditions of early Earth.


1969 ◽  
Vol 115 (1) ◽  
pp. 11-18 ◽  
Author(s):  
A. Massaglia ◽  
U. Rosa ◽  
G. Rialdi ◽  
C. A. Rossi

1. The iodination of insulin was studied under various experimental conditions in aqueous media and in some organic solvents, by measuring separately the uptake of iodine by the four tyrosyl groups and the relative amounts of monoiodotyrosine and di-iodotyrosine that are formed. In aqueous media from pH1 to pH9 the iodination occurs predominantly on the tyrosyl groups of the A chain. Some organic solvents increase the iodine uptake of the B-chain tyrosyl groups. Their efficacy in promoting iodination of Tyr-B-16 and Tyr-B-26 is in the order: ethylene glycol and propylene glycol≃methanol and ethanol>dioxan>8m-urea. 2. It is suggested that each of the four tyrosyl groups in insulin has a different environment: Tyr-A-14 is fully exposed to the solvent; Tyr-A-19 is sterically influenced by the environmental structure, possibly by the vicinity of a disulphide interchain bond; Tyr-B-16 is embedded into a non-polar area whose stability is virtually independent of the molecular conformation; Tyr-B-26 is probably in a situation similar to Tyr-B-16 with the difference that its non-polar environment depends on the preservation of the native structure.


1975 ◽  
Vol 19 (3) ◽  
pp. 301-304
Author(s):  
Ann E. Martin

The present study was conducted to investigate the effects of environmental conditions on visual workload. The environmental variables used were temperature, studied at levels of 45°F., WBGT, and 95°F., WBGT; and noise, studied at 83 dBA intermittent noise and 93 dBA continuous noise. Workload was defined as the amount of attention demanded from an operator as measured by performance decrement on a secondary task while performing a primary and secondary task simultaneously. The secondary task was reading random numbers, and the primary task was reading word lists. Significant differences (p<.05) were found between the control condition and all experimental conditions. The low temperature and high temperature-continuous noise conditions were significantly different from the other conditions. Noise and temperature were found to significantly increase workload (p<05).


2009 ◽  
Vol 12 (6) ◽  
pp. 699-714 ◽  
Author(s):  
Naira Delgado ◽  
Armando Rodríguez-Pérez ◽  
Jeroen Vaes ◽  
Jacques-Philippe Leyens ◽  
Verónica Betancor

Two experiments examine whether exposure to generic violence can display infrahumanization towards out-groups. In Study 1, participants had to solve a lexical decision task after viewing animal or human violent scenes. In Study 2, participants were exposed to either human violent or human suffering pictures before doing a lexical decision task. In both studies, the infrahumanization bias appeared after viewing the human violent pictures but not in the other experimental conditions. These two experiments support the idea of contextual dependency of infrahumanization, and suggest that violence can prime an infrahuman perception of the out-group. Theoretical implications for infrahumanization and potential underlying mechanisms are discussed.


2019 ◽  
Vol 36 (9) ◽  
pp. 2029-2039 ◽  
Author(s):  
Steven Dreissig ◽  
Martin Mascher ◽  
Stefan Heckmann

Abstract Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652
Author(s):  
Víctor H. Parraguez ◽  
Francisco Sales ◽  
Oscar A. Peralta ◽  
Eileen Narbona ◽  
Raúl Lira ◽  
...  

Twin-bearing pregnancies of sheep reared in harsh environmental conditions result in maternal undernutrition and feto-maternal oxidative stress, leading to intrauterine growth restriction (IUGR). We assessed the efficiency of supplementation with antioxidant herbal vitamins C and E alone or in combination with concentrate throughout gestation on pregnancy outcomes, pre-weaning growth, and survival of twin lambs from grazing ewes at the Magellan Steppe. Four groups (n = 30 each) of twin-bearing ewes received a base natural prairie (P) diet, supplemented with either herbal vitamins C 500 mg and E 350 IU per day (V) or concentrated food (S); groups were: P, P + V, P + S, and P + VS. Vitamins and concentrate were supplemented until parturition. At birth, lambs were weighed, and blood was drawn for total antioxidant capacity (TAC) evaluation. Lamb body weight (BW) and survival rate were evaluated at mid-lactation (60 days) and at weaning (120 days). Vitamin supplementation resulted in increased lamb birth weight and TAC, with a trend towards higher BW at weaning, while nutritional supplementation only had a positive effect on birth weight. Lamb survival was higher in both vitamin supplemented groups. In conclusion, supplementation with herbal vitamins C and E alone or in combination with concentrate food during pregnancy may constitute a good nutritional strategy for sheep reared in harsh environmental conditions.


2015 ◽  
Vol 24 (3) ◽  
pp. 357-360 ◽  
Author(s):  
Michele da Costa Pinheiro ◽  
Elizabete Captivo Lourenço ◽  
Iwine Joyce Barbosa de Sá-Hungaro ◽  
Kátia Maria Famadas

The natural hosts of Amblyomma nodosum in the immature stages are a variety of birds and the anteater in the adult stage. However, so far no data have been published about this tick’s life cycle. To fill this gap, a record was made of its development under laboratory conditions. All the procedures were controlled in a BOD chamber set at 27±1 °C and 80±10% relative humidity and scotophase. The parasitic stages were raised on rabbits (Oryctolagus cuniculus Linnaeus, 1758), from which more than 50% of larvae and nymphs were recovered, although only a small portion performed ecdysis. The adults did not fixed on the rabbits, which suggests that the experimental conditions were unsuitable for the requirements of this species. The data obtained here indicate that A. nodosum is highly dependent on its host and environment whereas under laboratory conditions and host chosen for the study was not obtained satisfactory results and new studies with different hosts and new environmental conditions should be elaborated.


1964 ◽  
Vol 42 (10) ◽  
pp. 2176-2192 ◽  
Author(s):  
F. D. Findlay ◽  
J. C. Polanyi

When atomic plus molecular hydrogen coming from a Wood's discharge tube are mixed with molecular chlorine, infrared emission is observed (1). At low reagent pressures, ~10−2 mm Hg, this emission can be related to the relative rate of the reaction H + Cl2 → HCl†ν + Cl proceeding to form HCl in vibrationally excited states ν = 1–6, of the ground electronic state. In the present work this system has been investigated for the first time at ~100 × the reagent pressure (~1 mm Hg). The reaction was shown to proceed by a chain mechanism. The translational–rotational temperature was 1300 ± 100 °K under the experimental conditions normally used. The vibrational distribution was notable for the presence of vibrators in levels ν = 7 and 8, which are respectively 4 and 10 kcal higher in energy than the exothermicity of the H + Cl2 reaction. The population in these levels appeared to be related to that in the levels with [Formula: see text]; it was proposed that vibrational–vibrational exchange among these lower levels was responsible for populating the higher ones. A simple model yielded a collision efficiency for HCl†ν=1 + HCl†ν=6 → HCl†ν=7 + HCl†ν=0, of Z1,6t = 6 × 103 collisions per transfer. Addition of HCl to the reaction mixture brought about a redistribution among vibrationally excited states indicative of a fast vibrational transfer, HClν=0 + HCl†ν=2 → 2 HCl†ν=1.At reduced pressure of HCl† the stationary-state distribution among higher vibrational states approximated closely to that observed at 10−2 mm Hg total pressure (where collisional deactivation is insignificant), suggesting that collisional deactivation was not of major importance even at the pressure used in the present work. In order to account for the high translational–rotational temperature, in the absence of substantial vibrational deactivation, it was necessary to suppose that the greater part of the energy liberated by the reaction H + Cl2 went directly into translational and rotational motion of the products.


1977 ◽  
Vol 167 (3) ◽  
pp. 723-729 ◽  
Author(s):  
G W J Matcham ◽  
K S Dodgson ◽  
J W Fitzgerald

The availability of homogeneous samples of the potassium salts of L- and D-octan-2-yl sulphate has enabled the separation of the optically stereospecific CS1 and CS2 secondary alkysulphohydrolases from extracts of cells of Comamonas terrigena. The CS2 enzyme was purified to homogeneity, and an initial study was made of its general properties, specificity, cellular localization and relationship to the CS1 enzyme. The CS2 enzyme has a molecular weight of approx. 250000 and a subunit size of approx. 58000, indicating that the molecule is a tetramer. Under the experimental conditions used the enzyme appears to be specific for (+)-secondary alkyl sulphate esters with the sulphate group at C-2 and with a chain length of at least six carbons. Enzyme activity towards racemic C-2 sulphates increases with increasing chain length up to C10, and there is some indirect evidence to suggest that activity declines when that chain length is exceeded. Other indirect evidence confirms that the CS1 enzyme exhibits similar specificity, except that only (-)-isomers can serve as substrates. Both enzymes are present in broth-grown stationary-phase cells of C. terrigena in approximately equal amounts.


Sign in / Sign up

Export Citation Format

Share Document