scholarly journals Identification of a Novel Prognostic Signature of Genome Instability-Related LncRNAs in Early Stage Lung Adenocarcinoma

Author(s):  
Bo Peng ◽  
Huawei Li ◽  
Ruisi Na ◽  
Tong Lu ◽  
Yongchao Li ◽  
...  

BackgroundIncreasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play a crucial part in maintaining genomic instability. We therefore identified genome instability-related lncRNAs and constructed a prediction signature for early stage lung adenocarcinoma (LUAD) as well in order for classification of high-risk group of patients and improvement of individualized therapies.MethodsEarly stage LUAD RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) were randomly divided into training set (n = 177) and testing set (n = 176). A total of 146 genomic instability-associated lncRNAs were identified based on somatic mutation profiles combining lncRNA expression profiles from TCGA by the “limma R” package. We performed Cox regression analysis to develop this predictive indicator. We validated the prognostic signature by an external independent LUAD cohort with microarray platform acquired from the Gene Expression Omnibus (GEO).ResultsA genome instability-related six-lncRNA-based gene signature (GILncSig) was established to divide subjects into high-risk and low-risk groups with different outcomes at statistically significant levels. According to the multivariate Cox regression and stratification analysis, the GILncSig was an independent predictive factor. Furthermore, the six-lncRNA signature achieved AUC values of 0.745, 0.659, and 0.708 in the training set, testing set, and TCGA set, respectively. When compared with other prognostic lncRNA signatures, the GILncSig also exhibited better prediction performance.ConclusionThe prognostic lncRNA signature is a potent tool for risk stratification of early stage LUAD patients. Our study also provided new insights for identifying genome instability-related cancer biomarkers.

Author(s):  
Wei Geng ◽  
Zhilei Lv ◽  
Jinshuo Fan ◽  
Juanjuan Xu ◽  
Kaimin Mao ◽  
...  

Background: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor with substantial somatic mutations and genome instability, which are emerging hallmarks of cancer. Long non-coding RNAs (lncRNAs) are promising cancer biomarkers that are reportedly involved in genomic instability. However, the identification of genome instability-related lncRNAs (GInLncRNAs) and their clinical significance has not been investigated in LUAD.Methods: We determined GInLncRNAs by combining somatic mutation and transcriptome data of 457 patients with LUAD and probed their potential function using co-expression network and Gene Ontology (GO) enrichment analyses. We then filtered GInLncRNAs by Cox regression and LASSO regression to construct a genome instability-related lncRNA signature (GInLncSig). We subsequently evaluated GInLncSig using correlation analyses with mutations, external validation, model comparisons, independent prognostic significance analyses, and clinical stratification analyses. Finally, we established a nomogram for prognosis prediction in patients with LUAD and validated it in the testing set and the entire TCGA dataset.Results: We identified 161 GInLncRNAs, of which seven were screened to develop a prognostic GInLncSig model (LINC01133, LINC01116, LINC01671, FAM83A-AS1, PLAC4, MIR223HG, and AL590226.1). GInLncSig independently predicted the overall survival of patients with LUAD and displayed an improved performance compared to other similar signatures. Furthermore, GInLncSig was related to somatic mutation patterns, suggesting its ability to reflect genome instability in LUAD. Finally, a nomogram comprising the GInLncSig and tumor stage exhibited improved robustness and clinical practicability for predicting patient prognosis.Conclusion: Our study identified a signature for prognostic prediction in LUAD comprising seven lncRNAs associated with genome instability, which may provide a useful indicator for clinical stratification management and treatment decisions for patients with LUAD.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16073-e16073
Author(s):  
Weitao Zhuang ◽  
Xiao-song Ben ◽  
Dan Tian ◽  
Zihao Zhou ◽  
Gang Chen ◽  
...  

e16073 Background: Esophageal squamous cell cancer (ESCC) is a malignant tumor with a poor 5-year relative survival. A prognosis prediction signature associated with DNA Damage Response (DDR) genes in ESCC was explored in this study. Methods: The clinical and gene expression profiles of ESCC patients were downloaded from the GEO and TCGA database. Univariate Cox regression and 1000 iterations of 10-fold cross-validation of LASSO Cox regression with binomial deviance minimization criteria were used to identify DDR genes as potential object and a prognostic signature for ESCC survival prediction, followed by validation of the signature via TCGA cohort and identification of independent prognostic predictors. A nomogram for prognosis prediction was built and Gene Set Enrichment Analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Results: A signature of 8 DDR genes were constructed as being significantly associated with overall survival (OS) among patients with esophageal squamous cell carcinoma. The pronostic signature stratified ESCC patients into low- vs high-risk groups in terms of OS in the training set, testing set and the validation cohorts, and remained as an independent prognostic factor in multivariate analyses (hazard ratio (HR) in training set, 0.17 [95% CI, 0.09-0.35; P < 0 .001], HR in testing set, 0.38 [95% CI, 0.16-0.93; P = 0.029], HR in discovery cohort, 0.171 [95% CI, 0.03-0.48; P < 0 .001]) after adjusting for clinicopathological factors. The 8-DDR gene signature achieved a higher accuracy (C-index, 0.69; AUCs for 1-, 3- and 5-year OS, 0.74, 0.77 and 0.76, respectively) than 7 previously reported multigene signatures (C-index range, 0.53 to 0.60; AUCs range, 0.55to 0.66, 0.54 to 0.64 and 0.62 to 0.66, respectively) for estimation of survival in comparable cohorts. A nomogram incorporating tumor location, grade, adjuvant therapy and signature-based risk group showed better predictive performance for 1- and 3- year survival than for 5 year survival. Moreover, GSEA revealed that the DNA repair was more prominently enriched in the high-risk group while the low-risk group had not enrichment of any process (P > 0.05 for all). Conclusions: Taken together, our study identified 8 DDR genes related to the prognosis of ESCC patients, and constructed a robust prognostic signature to effectively stratify ESCC patients with different survival rates, which may help recognize high-risk patients potentially benefiting from more aggressive treatment.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Pancheng Wu ◽  
Yi Zheng ◽  
Yanyu Wang ◽  
Yadong Wang ◽  
Naixin Liang

Abstract Background The incidence of stage I and stage II lung adenocarcinoma (LUAD) is likely to increase with the introduction of annual screening programs for high-risk individuals. We aimed to identify a reliable prognostic signature with immune-related genes that can predict prognosis and help making individualized management for patients with early-stage LUAD. Methods The public LUAD cohorts were obtained from the large-scale databases including 4 microarray data sets from the Gene Expression Omnibus (GEO) and 1 RNA-seq data set from The Cancer Genome Atlas (TCGA) LUAD cohort. Only early-stage patients with clinical information were included. Cox proportional hazards regression model was performed to identify the candidate prognostic genes in GSE30219, GSE31210 and GSE50081 (training set). The prognostic signature was developed using the overlapped prognostic genes based on a risk score method. Kaplan–Meier curve with log-rank test and time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic value and performance of this signature, respectively. Furthermore, the robustness of this prognostic signature was further validated in TCGA-LUAD and GSE72094 cohorts. Results A prognostic immune signature consisting of 21 immune-related genes was constructed using the training set. The prognostic signature significantly stratified patients into high- and low-risk groups in terms of overall survival (OS) in training data set, including GSE30219 (HR = 4.31, 95% CI 2.29–8.11; P = 6.16E−06), GSE31210 (HR = 11.91, 95% CI 4.15–34.19; P = 4.10E−06), GSE50081 (HR = 3.63, 95% CI 1.90–6.95; P = 9.95E−05), the combined data set (HR = 3.15, 95% CI 1.98–5.02; P = 1.26E−06) and the validation data set, including TCGA-LUAD (HR = 2.16, 95% CI 1.49–3.13; P = 4.54E−05) and GSE72094 (HR = 2.95, 95% CI 1.86–4.70; P = 4.79E−06). Multivariate cox regression analysis demonstrated that the 21-gene signature could serve as an independent prognostic factor for OS after adjusting for other clinical factors. ROC curves revealed that the immune signature achieved good performance in predicting OS for early-stage LUAD. Several biological processes, including regulation of immune effector process, were enriched in the immune signature. Moreover, the combination of the signature with tumor stage showed more precise classification for prognosis prediction and treatment design. Conclusions Our study proposed a robust immune-related prognostic signature for estimating overall survival in early-stage LUAD, which may be contributed to make more accurate survival risk stratification and individualized clinical management for patients with early-stage LUAD.


Author(s):  
Xiang Fei ◽  
Congli Hu ◽  
Xinyu Wang ◽  
Chaojing Lu ◽  
Hezhong Chen ◽  
...  

Ferroptosis-related genes play an important role in the progression of lung adenocarcinoma (LUAD). However, the potential function of ferroptosis-related lncRNAs in LUAD has not been fully elucidated. Thus, to explore the potential role of ferroptosis-related lncRNAs in LUAD, the transcriptome RNA-seq data and corresponding clinical data of LUAD were downloaded from the TCGA dataset. Pearson correlation was used to mine ferroptosis-related lncRNAs. Differential expression and univariate Cox analysis were performed to screen prognosis related lncRNAs. A ferroptosis-related lncRNA prognostic signature (FLPS), which included six ferroptosis-related lncRNAs, was constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression. Patients were divided into a high risk-score group and low risk-score group by the median risk score. Receiver operating characteristic (ROC) curves, principal component analysis (PCA), and univariate and multivariate Cox regression were performed to confirm the validity of FLPS. Enrichment analysis showed that the biological processes, pathways and markers associated with malignant tumors were more common in high-risk subgroups. There were significant differences in immune microenvironment and immune cells between high- and low-risk groups. Then, a nomogram was constructed. We further investigated the relationship between six ferroptosis-related lncRNAs and tumor microenvironment and tumor stemness. A competing endogenous RNA (ceRNA) network was established based on the six ferroptosis-related lncRNAs. Finally, we detected the expression levels of ferroptosis-related lncRNAs in clinical samples through quantitative real-time polymerase chain reaction assay (qRT-PCR). In conclusion, we identified the prognostic ferroptosis-related lncRNAs in LUAD and constructed a prognostic signature which provided a new strategy for the evaluation and prediction of prognosis in LUAD.


2020 ◽  
Vol 52 (6) ◽  
pp. 638-653
Author(s):  
Jiannan Yao ◽  
Xinying Xue ◽  
Dongfeng Qu ◽  
C Benedikt Westphalen ◽  
Yang Ge ◽  
...  

Abstract Identifying early-stage cancer patients at risk for progression is a major goal of biomarker research. This report describes a novel 19-gene signature (19-GCS) that predicts stage I lung adenocarcinoma (LAC) recurrence and response to therapy and performs comparably in pancreatic adenocarcinoma (PAC), which shares LAC molecular traits. Kaplan–Meier, Cox regression, and cross-validation analyses were used to build the signature from training, test, and validation sets comprising 831 stage I LAC transcriptomes from multiple independent data sets. A statistical analysis was performed using the R language. Pathway and gene set enrichment were used to identify underlying mechanisms. 19-GCS strongly predicts overall survival and recurrence-free survival in stage I LAC (P=0.002 and P&lt;0.001, respectively) and in stage I–II PAC (P&lt;0.0001 and P&lt;0.0005, respectively). A multivariate cox regression analysis demonstrated the independence of 19-GCS from significant clinical factors. Pathway analyses revealed that 19-GCS high-risk LAC and PAC tumors are characterized by increased proliferation, enhanced stemness, DNA repair deficiency, and compromised MHC class I and II antigen presentation along with decreased immune infiltration. Importantly, high-risk LAC patients do not appear to benefit from adjuvant cisplatin while PAC patients derive additional benefit from FOLFIRINOX compared with gemcitabine-based regimens. When validated prospectively, this proof-of-concept biomarker may contribute to tailoring treatment, recurrence reduction, and survival improvements in early-stage lung and pancreatic cancers.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12433
Author(s):  
Jianyu Zhao ◽  
Bo Liu ◽  
Xiaoping Li

Background Adrenocortical carcinoma (ACC) is a rare endocrine cancer that manifests as abdominal masses and excessive steroid hormone levels and is associated with poor clinical outcomes. Transcription factors (TFs) deregulation is found to be involved in adrenocortical tumorigenesis and cancer progression. This study aimed to construct a TF-based prognostic signature for the prediction of survival of ACC patients. Methods The gene expression profile and clinical information for ACC patients were downloaded from The Cancer Genome Atlas (TCGA, training set) and Gene Expression Omnibus (GEO, validation set) datasets after obtained 1,639 human TFs from a previously published study. The univariate Cox regression analysis was applied to identify the survival-related TFs and the LASSO Cox regression was conducted to construct the TF signature based on these survival-associated TFs candidates. Then, multivariate analysis was used to reveal the independent prognostic factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was performed to analyze the significance of the TFs constituting the prognostic signature. Results LASSO Cox regression and multivariate Cox regression identified a 13-TF prognostic signature comprised of CREB3L3, NR0B1, CENPA, FOXM1, E2F2, MYBL2, HOXC11, ZIC2, ZNF282, DNMT1, TCF3, ELK4, and KLF6. The risk score based on the TF signature could classify patients into low- and high-risk groups. Kaplan-Meier analyses showed that patients in the high-risk group had significantly shorter overall survival (OS) compared to the low-risk patients. Receiver operating characteristic (ROC) curves showed that the prognostic signature predicted the OS of ACC patients with good sensitivity and specificity both in the training set (AUC > 0.9) and the validation set (AUC > 0.7). Furthermore, the TF-risk score was an independent prognostic factor. Conclusions Taken together, we identified a 13-TF prognostic marker to predict OS in ACC patients.


2017 ◽  
Vol 27 (7) ◽  
pp. 1379-1386 ◽  
Author(s):  
Rhonda Farrell ◽  
Suzanne C. Dixon ◽  
Jonathan Carter ◽  
Penny M. Webb

ObjectiveThe role of lymphadenectomy (LND) in early-stage endometrial cancer (EC) remains controversial. Previous studies have included low-risk patients and nonendometrioid histologies for which LND may not be beneficial, whereas long-term morbidity after LND is unclear. In a large Australian cohort of women with clinical early-stage intermediate-/high-risk endometrioid EC, we analyzed the association of LND with clinicopathological characteristics, adjuvant treatment, survival, patterns of disease recurrence, and morbidity.Materials and MethodsFrom a larger prospective study (Australian National Endometrial Cancer Study), we analyzed data from 328 women with stage IA grade 3 (n = 63), stage IB grade 1 to 3 (n = 160), stage II grade 1 to 3 (n = 71), and stage IIIC1/2 grade 1 to 3 (n = 31/3) endometrioid EC. Overall survival (OS) was estimated using Kaplan-Meier methods. The association of LND with OS was assessed using Cox regression analysis adjusted for age, stage, grade, and adjuvant treatment. The association with risk of recurrent disease was analyzed using logistic regression adjusted for age, stage, and grade. Morbidity data were analyzed using χ2 tests.ResultsMedian follow-up was 45.8 months. Overall survival at 3 years was 93%. Lymphadenectomy was performed in 217 women (66%), 16% of this group having positive nodes. Median node count was 12. There were no significant differences in OS between LND and no LND groups, or by number of nodes removed. After excluding stage IB grade 1/2 tumors, there was no association between LND and OS among a “high-risk” group of 190 women with a positive node rate of 24%. However, a similar cohort (n = 71) of serous EC in the Australian National Endometrial Cancer Study had improved survival after LND. Women who underwent LND had significantly higher rates of critical events (5% vs 0%, P = 0.02) and lymphoedema (23% vs 4%, P < 0.0001).ConclusionsIn this cohort with early-stage intermediate-/high-risk endometrioid EC, LND did not improve survival but was associated with significantly increased morbidity.


2021 ◽  
Author(s):  
Yanjia Hu ◽  
Jing Zhang ◽  
Jing Chen

Abstract Background Hypoxia-related long non-coding RNAs (lncRNAs) have been proven to play a role in multiple cancers and can serve as prognostic markers. Lower-grade gliomas (LGGs) are characterized by large heterogeneity. Methods This study aimed to construct a hypoxia-related lncRNA signature for predicting the prognosis of LGG patients. Transcriptome and clinical data of LGG patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LGG cohort in TCGA was chosen as training set and LGG cohorts in CGGA served as validation sets. A prognostic signature consisting of fourteen hypoxia-related lncRNAs was constructed using univariate and LASSO Cox regression. A risk score formula involving the fourteen lncRNAs was developed to calculate the risk score and patients were classified into high- and low-risk groups based on cutoff. Kaplan-Meier survival analysis was used to compare the survival between two groups. Cox regression analysis was used to determine whether risk score was an independent prognostic factor. A nomogram was then constructed based on independent prognostic factors and assessed by C-index and calibration plot. Gene set enrichment analysis and immune cell infiltration analysis were performed to uncover further mechanisms of this lncRNA signature. Results LGG patients with high risk had poorer prognosis than those with low risk in both training and validation sets. Recipient operating characteristic curves showed good performance of the prognostic signature. Univariate and multivariate Cox regression confirmed that the established lncRNA signature was an independent prognostic factor. C-index and calibration plots showed good predictive performance of nomogram. Gene set enrichment analysis showed that genes in the high-risk group were enriched in apoptosis, cell adhesion, pathways in cancer, hypoxia etc. Immune cells were higher in high-risk group. Conclusion The present study showed the value of the 14-lncRNA signature in predicting survival of LGGs and these 14 lncRNAs could be further investigated to reveal more mechanisms involved in gliomas.


Author(s):  
Wei Jiang ◽  
Jiameng Xu ◽  
Zirui Liao ◽  
Guangbin Li ◽  
Chengpeng Zhang ◽  
...  

ObjectiveTo screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes (CCRGs) and develop a prognostic signature for patients with LUAC.MethodsThe GSE68465, GSE42127, and GSE30219 data sets were downloaded from the GEO database. Single-sample gene set enrichment analysis was used to calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome Atlas were determined. The genetic data from GSE68465 were divided into an internal training group and a test group at a ratio of 1:1, and GSE42127 and GSE30219 were defined as external test groups. In addition, we combined LASSO (least absolute shrinkage and selection operator) and Cox regression analysis with the clinical information of the internal training group to construct a CCRG risk scoring model. Samples were divided into high- and low-risk groups according to the resulting risk values, and internal and external test sets were used to prove the validity of the signature. A nomogram evaluation model was used to predict prognosis. The CPTAC and HPA databases were chosen to verify the protein expression of CCRGs.ResultsWe identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using the internal training group. Based on this model, LUAC patients were divided into high- and low-risk groups for further validation. Time-dependent receiver operating characteristic and Cox regression analyses suggested that the signature could precisely predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC supported significant dysregulation of these CCRGs in LUAC tissues.ConclusionThis prognostic prediction signature based on CCRGs could help to evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used as prognostic markers of LUAC.


Sign in / Sign up

Export Citation Format

Share Document