scholarly journals Identification of the Prognostic Significance of Somatic Mutation-Derived LncRNA Signatures of Genomic Instability in Lung Adenocarcinoma

Author(s):  
Wei Geng ◽  
Zhilei Lv ◽  
Jinshuo Fan ◽  
Juanjuan Xu ◽  
Kaimin Mao ◽  
...  

Background: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor with substantial somatic mutations and genome instability, which are emerging hallmarks of cancer. Long non-coding RNAs (lncRNAs) are promising cancer biomarkers that are reportedly involved in genomic instability. However, the identification of genome instability-related lncRNAs (GInLncRNAs) and their clinical significance has not been investigated in LUAD.Methods: We determined GInLncRNAs by combining somatic mutation and transcriptome data of 457 patients with LUAD and probed their potential function using co-expression network and Gene Ontology (GO) enrichment analyses. We then filtered GInLncRNAs by Cox regression and LASSO regression to construct a genome instability-related lncRNA signature (GInLncSig). We subsequently evaluated GInLncSig using correlation analyses with mutations, external validation, model comparisons, independent prognostic significance analyses, and clinical stratification analyses. Finally, we established a nomogram for prognosis prediction in patients with LUAD and validated it in the testing set and the entire TCGA dataset.Results: We identified 161 GInLncRNAs, of which seven were screened to develop a prognostic GInLncSig model (LINC01133, LINC01116, LINC01671, FAM83A-AS1, PLAC4, MIR223HG, and AL590226.1). GInLncSig independently predicted the overall survival of patients with LUAD and displayed an improved performance compared to other similar signatures. Furthermore, GInLncSig was related to somatic mutation patterns, suggesting its ability to reflect genome instability in LUAD. Finally, a nomogram comprising the GInLncSig and tumor stage exhibited improved robustness and clinical practicability for predicting patient prognosis.Conclusion: Our study identified a signature for prognostic prediction in LUAD comprising seven lncRNAs associated with genome instability, which may provide a useful indicator for clinical stratification management and treatment decisions for patients with LUAD.

Author(s):  
Bo Peng ◽  
Huawei Li ◽  
Ruisi Na ◽  
Tong Lu ◽  
Yongchao Li ◽  
...  

BackgroundIncreasing evidence has demonstrated that long non-coding RNAs (lncRNAs) play a crucial part in maintaining genomic instability. We therefore identified genome instability-related lncRNAs and constructed a prediction signature for early stage lung adenocarcinoma (LUAD) as well in order for classification of high-risk group of patients and improvement of individualized therapies.MethodsEarly stage LUAD RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) were randomly divided into training set (n = 177) and testing set (n = 176). A total of 146 genomic instability-associated lncRNAs were identified based on somatic mutation profiles combining lncRNA expression profiles from TCGA by the “limma R” package. We performed Cox regression analysis to develop this predictive indicator. We validated the prognostic signature by an external independent LUAD cohort with microarray platform acquired from the Gene Expression Omnibus (GEO).ResultsA genome instability-related six-lncRNA-based gene signature (GILncSig) was established to divide subjects into high-risk and low-risk groups with different outcomes at statistically significant levels. According to the multivariate Cox regression and stratification analysis, the GILncSig was an independent predictive factor. Furthermore, the six-lncRNA signature achieved AUC values of 0.745, 0.659, and 0.708 in the training set, testing set, and TCGA set, respectively. When compared with other prognostic lncRNA signatures, the GILncSig also exhibited better prediction performance.ConclusionThe prognostic lncRNA signature is a potent tool for risk stratification of early stage LUAD patients. Our study also provided new insights for identifying genome instability-related cancer biomarkers.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaolin Yu ◽  
Xiaomei Zhang ◽  
Yanxia Zhang

Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with a depressing survival rate. The reprogramming of tumor metabolism was identified as a new hallmark of cancer in tumor microenvironment (TME), and we made a comprehensive exploration to reveal the prognostic role of the metabolic-related genes. Transcriptome profiling data of LUAD were, respectively, downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Based on the extracted metabolic-related genes, a novel 5-gene metabolic prognostic signature (including GNPNAT1, LPGAT1, TYMS, LDHA, and PTGES) was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. This signature confirmed its robustness and accuracy by external validation in multiple databases. It could be an independent risk factor for LUAD, and the nomograms possessed moderately accurate performance with the C-index of 0.755 (95% confidence interval: 0.706–0.804) and 0.691 (95% confidence interval: 0.636–0.746) in training set and testing set. This signature could reveal the metabolic features according to the results of gene set enrichment analysis (GSEA) and meanwhile monitor the status of TME through ESTIMATE scores and the infiltration levels of immune cells. In conclusion, this gene signature is a cost-effective tool which could indicate the status of TME to provide more clues in the exploration of new diagnostic and therapeutic strategy.


2021 ◽  
Author(s):  
Jichang Liu ◽  
Yadong Wang ◽  
Weiqing Zhong ◽  
Yong Liu ◽  
Kai Wang ◽  
...  

Abstract Background: Lung cancer remains the most fatal tumorous disease in the worldwide. Among that, lung adenocarcinoma (LUAD) was the most common histological type. A precise and concise prognostic model was urgently needed of LUAD. We developed a 23-gene signature for prognosis prediction based on EMT, immune and stromal datasets.Methods: Univariate Cox regression analysis was performed to select genes which were significantly associated with overall survival (OS) of the TCGA LUAD cohorts. LASSO regression and multivariate Cox regression analysis was used to build the multi-gene signature. Enrichment analyses and a protein-protein interactions (PPI) network were performed to show the interaction and functions of the signature. A nomogram was developed based on risk score and other clinical features. Predictive performance of the signature was externally validated in two independent datasets from Gene Expression Omnibus (GSE37745 and GSE13213).Results: A total of 1334 EMT, immune and stromal associated genes were obtained. After LASSO regression and multivariate Cox regression analysis, a 23-gene signature for risk stratification was built. K-M curves showed that the patients with high risk had a poorer outcome. Finally, a nomogram was built to predict prognosis. The predictive performance of the 23-gene signature was confirmed in internal and external validation.Conclusion: We developed and verified a 23-gene signature based on EMT, immune and stromal gene sets. It provided a convenient and concise tool for risk stratificationand individual medicine.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199727
Author(s):  
Xinyu Wang ◽  
Jiaojiao Yang ◽  
Xueren Gao

Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, comprising around 40% of all lung cancer. Until now, the pathogenesis of LUAD has not been fully elucidated. In the current study, we comprehensively analyzed the dysregulated genes in lung adenocarcinoma by mining public datasets. Two sets of gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. The dysregulated genes were identified by using the GEO2R online tool, and analyzed by R packages, Cytoscape software, STRING, and GPEIA online tools. A total of 275 common dysregulated genes were identified in two independent datasets, including 54 common up-regulated and 221 common down-regulated genes in LUAD. Gene Ontology (GO) enrichment analysis showed that these dysregulated genes were significantly enriched in 258 biological processes (BPs), 27 cellular components (CCs), and 21 molecular functions (MFs). Furthermore, protein-protein interaction (PPI) network analysis showed that PECAM1, ENG, KLF4, CDH5, and VWF were key genes. Survival analysis indicated that the low expression of ENG was associated with poor overall survival (OS) of LUAD patients. The low expression of PECAM1 was associated with poor OS and recurrence-free survival of LUAD patients. The cox regression model developed based on age, tumor stage, ENG, PECAM1 could effectively predict 5-year survival of LUAD patients. This study revealed some key genes, BPs, CCs, and MFs involved in LUAD, which would provide new insights into understanding the pathogenesis of LUAD. In addition, ENG and PECAM1 might serve as promising prognostic markers in LUAD.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.


2019 ◽  
Vol 21 (5) ◽  
pp. 1742-1755 ◽  
Author(s):  
Siqi Bao ◽  
Hengqiang Zhao ◽  
Jian Yuan ◽  
Dandan Fan ◽  
Zicheng Zhang ◽  
...  

Abstract Emerging evidence revealed the critical roles of long non-coding RNAs (lncRNAs) in maintaining genomic instability. However, identification of genome instability-associated lncRNAs and their clinical significance in cancers remain largely unexplored. Here, we developed a mutator hypothesis-derived computational frame combining lncRNA expression profiles and somatic mutation profiles in a tumor genome and identified 128 novel genomic instability-associated lncRNAs in breast cancer as a case study. We then identified a genome instability-derived two lncRNA-based gene signature (GILncSig) that stratified patients into high- and low-risk groups with significantly different outcome and was further validated in multiple independent patient cohorts. Furthermore, the GILncSig correlated with genomic mutation rate in both ovarian cancer and breast cancer, indicating its potential as a measurement of the degree of genome instability. The GILncSig was able to divide TP53 wide-type patients into two risk groups, with the low-risk group showing significantly improved outcome and the high-risk group showing no significant difference compared with those with TP53 mutation. In summary, this study provided a critical approach and resource for further studies examining the role of lncRNAs in genome instability and introduced a potential new avenue for identifying genomic instability-associated cancer biomarkers.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 426-426
Author(s):  
Mark Doherty ◽  
Stephanie Moignard ◽  
Gonzalo Sapisochin ◽  
Grainne M. O'Kane ◽  
Mairead Geraldine McNamara ◽  
...  

426 Background: The prognostic significance of anemia in BTC is unknown, but is common and may be multifactorial; data regarding its causes are limited. This study interrogated a large institutional database to examine the effect of anemia on overall survival (OS) in BTC, and explore factors associated with anemia. Methods: This Princess Margaret Cancer Centre cohort study included patients with BTC with available baseline hemoglobin (Hb) (1987-2016). Anemia was defined as Hb < 132 mg/dL for men > 60 years, < 137mg/dL for men aged 20-59, and < 122mg/dL in women. Additional relevant covariates were included in multivariable Cox regression for OS, and linear regression for association with Hb. Results: Of 1398 patients included, 711 (51%) were anemic at baseline (mean Hb 112 mg/dL). Anemic versus non-anemic patients were older (median age 66 vs 64 yrs, p = 0.006), had worse ECOG PS (12% ECOG 2-3 vs 6%, p < .001), BMI < 20 (31% vs 27%, p = 0.006) and elevated neutrophil:lymphocyte ratio (NLR), (64% vs 47%, p < .001), but cancer staging was not significantly different. Anemia was associated with shorter OS on univariate (HR 1.35, p < .001) and multivariable (HR 1.39, p < .001) regression (Table). Factors associated with lower Hb included older age, male gender, worse ECOG PS, tumor site, thrombocytopenia, elevated NLR. Conclusions: Baseline anemia was associated with shorter survival following diagnosis of BTC, independent of tumor stage or ECOG PS. Clinicians should be aware of this prognostic marker; validation in prospective datasets is warranted. [Table: see text]


2021 ◽  
Vol 11 ◽  
Author(s):  
Fangyu Chen ◽  
Jiahang Song ◽  
Ziqi Ye ◽  
Bing Xu ◽  
Hongyan Cheng ◽  
...  

BackgroundLung adenocarcinoma (LUAD) is a leading malignancy and has a poor prognosis over the decades. LUAD is characterized by dysregulation of cell cycle. Immunotherapy has emerged as an ideal option for treating LUAD. Nevertheless, optimal biomarkers to predict outcomes of immunotherapy is still ill-defined and little is known about the interaction of cell cycle-related genes (CCRGs) and immunity-related genes (IRGs).MethodsWe downloaded gene expression and clinical data from TCGA and GEO database. LASSO regression and Cox regression were used to construct a differentially expressed CCRGs and IRGs signature. We used Kaplan-Meier analysis to compare survival of LUAD patients. We constructed a nomogram to predict the survival and calibration curves were used to evaluate the accuracy.ResultsA total of 61 differentially expressed CCRGs and IRGs were screened out. We constructed a new risk model based on 8 genes, including ACVR1B, BIRC5, NR2E1, INSR, TGFA, BMP7, CD28, NUDT6. Subgroup analysis revealed the risk model accurately predicted the overall survival in LUAD patients with different clinical features and was correlated with immune cells infiltration. A nomogram based on the risk model exhibited excellent performance in survival prediction of LUAD.ConclusionsThe 8 gene survival signature and nomogram in our study are effective and have potential clinical application to predict prognosis of LUAD.


2021 ◽  
Author(s):  
Boxuan Liu ◽  
Yun Zhao ◽  
Shuanying Yang

Abstract Background: Lung adenocarcinoma is the most occurred pathological type among non-small cell lung cancer. Although huge progress has been made in terms of early diagnosis, precision treatment in recent years, the overall 5-year survival rate of a patient remains low. In our study, we try to construct an autophagy-related lncRNA prognostic signature that may guide clinical practice.Methods: The mRNA and lncRNA expression matrix of lung adenocarcinoma patients were retrieved from TCGA database. Next, we constructed a co-expression network of lncRNAs and autophagy-related genes. Lasso regression and multivariate Cox regression were then applied to establish a prognostic risk model. Subsequently, a risk score was generated to differentiate high and low risk group and a ROC curve and Nomogram to visualize the predictive ability of current signature. Finally, gene ontology and pathway enrichment analysis were executed via GSEA.Results: A total of 1,703 autophagy-related lncRNAs were screened and five autophagy-related lncRNAs (LINC01137, AL691432.2, LINC01116, AL606489.1 and HLA-DQB1-AS1) were finally included in our signature. Judging from univariate(HR=1.075, 95% CI: 1.046–1.104) and multivariate(HR =1.088, 95%CI = 1.057 − 1.120) Cox regression analysis, the risk score is an independent factor for LUAD patients. Further, the AUC value based on the risk score for 1-year, 3-year, 5-year, was 0.735, 0.672 and 0.662 respectively. Finally, the lncRNAs included in our signature were primarily enriched in autophagy process, metabolism, p53 pathway and JAK/STAT pathway. Conclusions: Overall, our study indicated that the prognostic model we generated had certain predictability for LUAD patients’ prognosis.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


Sign in / Sign up

Export Citation Format

Share Document