scholarly journals Recent Progress in the Understanding of the Effect of Sympathetic Nerves on Hair Follicle Growth

Author(s):  
Jiarui Zhang ◽  
Ruosi Chen ◽  
Lihong Wen ◽  
Zhexiang Fan ◽  
Yilong Guo ◽  
...  

Clinical observation and experimental studies have long suggested that the perifollicular nerves have nutritional and regulatory effects on the growth, development, and physiological cycle of hair follicles (HFs), even though the concrete mechanism remains obscure. Recently, with the progress of immunohistochemistry and molecular biology techniques, more innovation has been made in the study of the follicular sympathetic nerves and its nerve-effect factor norepinephrine affecting hair follicle stem cells. This review highlights the progress in the regulation of the sympathetic nervous system toward the growth of HFs.

2011 ◽  
Vol 22 (14) ◽  
pp. 2532-2540 ◽  
Author(s):  
Kerry-Ann Nakrieko ◽  
Alena Rudkouskaya ◽  
Timothy S. Irvine ◽  
Sudhir J. A. D'souza ◽  
Lina Dagnino

Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15–expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.


Author(s):  
Christian Olszewski ◽  
Jessika Maassen ◽  
Rebecca Guenther ◽  
Claudia Skazik-Voogt ◽  
Angela Gutermuth

AbstractCorneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients. Graphical Abstract


Author(s):  
Lihong Wen ◽  
Yong Miao ◽  
Zhexiang Fan ◽  
Jiarui Zhang ◽  
Yixuan Guo ◽  
...  

BackgroundHair follicle tissue engineering is a promising strategy for treating hair loss. Human hair follicle stem cells (hHFSCs), which play a key role in the hair cycle, have potential applications in regenerative medicine. However, previous studies did not achieve efficient hHFSC expansion in vitro using feeder cells. Therefore, there is a need to develop an efficient primary culture system for the expansion and maintenance of hHFSCs.MethodsThe hHFSCs were obtained by two-step proteolytic digestion combined with microscopy. The cell culture dishes were coated with human fibronectin and inoculated with hHFSCs. The hHFSCs were harvested using a differential enrichment procedure. The effect of Rho-associated protein kinase (ROCK) inhibitor Y-27632, supplemented in keratinocyte serum-free medium (K-SFM), on adhesion, proliferation, and stemness of hHFSCs and the underlying molecular mechanisms were evaluated.ResultsThe hHFSCs cultured in K-SFM, supplemented with Y-27632, exhibited enhanced adhesion and proliferation. Additionally, Y-27632 treatment maintained the stemness of hHFSCs and promoted the ability of hHFSCs to regenerate hair follicles in vivo. However, Y-27632-induced proliferation and stemness in hHFSCs were conditional and reversible. Furthermore, Y-27632 maintained propagation and stemness of hHFSCs through the ERK/MAPK pathway.ConclusionAn efficient short-term culture system for primary hHFSCs was successfully established using human fibronectin and the ROCK inhibitor Y-27632, which promoted the proliferation, maintained the stemness of hHFSCs and promoted the ability to regenerate hair follicles in vivo. The xenofree culturing method used in this study provided a large number of high-quality seed cells, which have applications in hair follicle tissue engineering and stem cell therapy.


2019 ◽  
Vol 218 (10) ◽  
pp. 3163-3165
Author(s):  
Denise Gay ◽  
Mayumi Ito

Recent research shows that potentially cancerous, somatic mutations can reside in normal cells. Pineda et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201907178) report on a unique management technique by hair follicle stem cells to evade tumorigenesis.


2019 ◽  
Vol 218 (10) ◽  
pp. 3212-3222 ◽  
Author(s):  
Cristiana M. Pineda ◽  
David G. Gonzalez ◽  
Catherine Matte-Martone ◽  
Jonathan Boucher ◽  
Elizabeth Lathrop ◽  
...  

Mutations associated with tumor development in certain tissues can be nontumorigenic in others, yet the mechanisms underlying these different outcomes remains poorly understood. To address this, we targeted an activating Hras mutation to hair follicle stem cells and discovered that Hras mutant cells outcompete wild-type neighbors yet are integrated into clinically normal skin hair follicles. In contrast, targeting the Hras mutation to the upper noncycling region of the skin epithelium leads to benign outgrowths. Follicular Hras mutant cells autonomously and nonautonomously enhance regeneration, which directs mutant cells into continuous tissue cycling to promote integration rather than aberrancy. This follicular tolerance is maintained under additional challenges that promote tumorigenesis in the epidermis, including aging, injury, and a secondary mutation. Thus, the hair follicle possesses a unique, enhanced capacity to integrate and contain Hras mutant cells within both homeostatic and perturbed tissue, demonstrating that in the skin, multiple, distinct mechanisms exist to suppress oncogenic growth.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009948
Author(s):  
Pooja Flora ◽  
Meng-Yen Li ◽  
Phillip M. Galbo ◽  
Maider Astorkia ◽  
Deyou Zheng ◽  
...  

Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.


2013 ◽  
Vol 6 (2) ◽  
pp. 90 ◽  
Author(s):  
Somesh Gupta ◽  
Sujata Mohanty ◽  
Anil Kumar ◽  
Jyoti Dhawan ◽  
VinodK Sharma

Author(s):  
Patrycja Daszczuk ◽  
Paula Mazurek ◽  
Tomasz D. Pieczonka ◽  
Alicja Olczak ◽  
Łukasz M. Boryń ◽  
...  

This article explores and summarizes recent progress in and the characterization of main players in the regulation and cyclic regeneration of hair follicles. The review discusses current views and discoveries on the molecular mechanisms that allow hair follicle stem cells (hfSCs) to synergistically integrate homeostasis during quiescence and activation. Discussion elaborates on a model that shows how different populations of skin stem cells coalesce intrinsic and extrinsic mechanisms, resulting in the maintenance of stemness and hair regenerative potential during an organism’s lifespan. Primarily, we focus on the question of how the intrinsic oscillation of gene networks in hfSCs sense and respond to the surrounding niche environment. The review also investigates the existence of a cell-autonomous mechanism and the reciprocal interactions between molecular signaling axes in hfSCs and niche components, which demonstrates its critical driving force in either the activation of whole mini-organ regeneration or quiescent homeostasis maintenance. These exciting novel discoveries in skin stem cells and the surrounding niche components propose a model of the intrinsic stem cell oscillator which is potentially instructive for translational regenerative medicine. Further studies, deciphering of the distribution of molecular signals coupled with the nature of their oscillation within the stem cells and niche environments, may impact the speed and efficiency of various approaches that could stimulate the development of self-renewal and cell-based therapies for hair follicle stem cell regeneration.


2015 ◽  
Vol 1 (9) ◽  
pp. e1500973 ◽  
Author(s):  
Sivan Harel ◽  
Claire A. Higgins ◽  
Jane E. Cerise ◽  
Zhenpeng Dai ◽  
James C. Chen ◽  
...  

Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells.


Sign in / Sign up

Export Citation Format

Share Document