scholarly journals SIPA1 Enhances Aerobic Glycolysis Through HIF-2α Pathway to Promote Breast Cancer Metastasis

Author(s):  
Chenguang Yao ◽  
Jun Weng ◽  
Lingyun Feng ◽  
Wanjun Zhang ◽  
Yan Xu ◽  
...  

Increased dependence on aerobic glycolysis is characteristic of most cancer cells, whereas the mechanism underlying the promotion of aerobic glycolysis in metastatic breast cancer cells under ambient oxygen has not been well understood. Here, we demonstrated that aberrant expression of signal-induced proliferation-associated 1 (SIPA1) enhanced aerobic glycolysis and altered the main source of ATP production from oxidative phosphorylation to glycolysis in breast cancer cells. We revealed that SIPA1 promoted the transcription of EPAS1, which is known as the gene encoding hypoxia-inducible factor-2α (HIF-2α) and up-regulated the expression of multiple glycolysis-related genes to increase aerobic glycolysis. We also found that blocking aerobic glycolysis by either knocking down SIPA1 expression or oxamate treatment led to the suppression of tumor metastasis of breast cancer cells both in vitro and in vivo. Taken together, aberrant expression of SIPA1 resulted in the alteration of glucose metabolism from oxidative phosphorylation to aerobic glycolysis even at ambient oxygen levels, which might aggravate the malignancy of breast cancer cells. The present findings indicate a potential target for the development of therapeutics against breast cancers with dysregulated SIPA1 expression.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2020 ◽  
Vol 107 ◽  
pp. 65-77 ◽  
Author(s):  
Akshay A. Narkhede ◽  
James H. Crenshaw ◽  
David K. Crossman ◽  
Lalita A. Shevde ◽  
Shreyas S. Rao

Bone Research ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Haemin Kim ◽  
Bongjun Kim ◽  
Sang Il Kim ◽  
Hyung Joon Kim ◽  
Brian Y. Ryu ◽  
...  

Abstract Bone destruction induced by breast cancer metastasis causes severe complications, including death, in breast cancer patients. Communication between cancer cells and skeletal cells in metastatic bone microenvironments is a principal element that drives tumor progression and osteolysis. Tumor-derived factors play fundamental roles in this form of communication. To identify soluble factors released from cancer cells in bone metastasis, we established a highly bone-metastatic subline of MDA-MB-231 breast cancer cells. This subline (mtMDA) showed a markedly elevated ability to secrete S100A4 protein, which directly stimulated osteoclast formation via surface receptor RAGE. Recombinant S100A4 stimulated osteoclastogenesis in vitro and bone loss in vivo. Conditioned medium from mtMDA cells in which S100A4 was knocked down had a reduced ability to stimulate osteoclasts. Furthermore, the S100A4 knockdown cells elicited less bone destruction in mice than the control knockdown cells. In addition, administration of an anti-S100A4 monoclonal antibody (mAb) that we developed attenuated the stimulation of osteoclastogenesis and bone loss by mtMDA in mice. Taken together, our results suggest that S100A4 released from breast cancer cells is an important player in the osteolysis caused by breast cancer bone metastasis.


2014 ◽  
Vol 68 (4) ◽  
pp. 477-482 ◽  
Author(s):  
Engin Ulukaya ◽  
Mehmet Sarimahmut ◽  
Buse Cevatemre ◽  
Ferda Ari ◽  
Azmi Yerlikaya ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Duanyang Zhai ◽  
Tianfu Li ◽  
Runyi Ye ◽  
Jiong Bi ◽  
Xiaying Kuang ◽  
...  

BackgroundMetastasis is a major factor weakening the long-term survival of breast cancer patients. Increasing evidence revealed that long non-coding RNAs (lncRNAs) were involved in the occurrence and development of breast cancer. In this study, we aimed to investigate the role of LGALS8-AS1 in the metastatic progression of breast cancer cells and its potential mechanisms.ResultsThe lncRNA LGALS8-AS1 was highly expressed in breast cancer and associated with poor survival. LGALS8-AS1 functioned as an oncogenic lncRNA that promoted the metastasis of breast cancer both in vitro and in vivo. It upregulated SOX12 via competing as a competing endogenous RNA (ceRNA) for sponging miR-125b-5p and acted on the PI3K/AKT signaling pathway to promote the metastasis of breast cancer. Furthermore, SOX12, in turn, activated LGALS8-AS1 expression via direct recognition of its sequence binding enrichment motif on the LGALS8-AS1 promoter, thereby forming a positive feedback regulatory loop.ConclusionThis study manifested a novel mechanism of LGALS8-AS1 facilitating the metastasis of breast cancer. The LGALS8-AS1/miR-125b-5p/SOX12 reciprocal regulatory loop dyscrasia promoted the migration and invasion of breast cancer cells. This signaling axis could be applicable to the design of novel therapeutic strategies against this malignancy.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000872
Author(s):  
Yajing Lv ◽  
Xiaoshuang Wang ◽  
Xiaoyu Li ◽  
Guangwei Xu ◽  
Yuting Bai ◽  
...  

Metabolic reprogramming to fulfill the biosynthetic and bioenergetic demands of cancer cells has aroused great interest in recent years. However, metabolic reprogramming for cancer metastasis has not been well elucidated. Here, we screened a subpopulation of breast cancer cells with highly metastatic capacity to the lung in mice and investigated the metabolic alternations by analyzing the metabolome and the transcriptome, which were confirmed in breast cancer cells, mouse models, and patients’ tissues. The effects and the mechanisms of nucleotide de novo synthesis in cancer metastasis were further evaluated in vitro and in vivo. In our study, we report an increased nucleotide de novo synthesis as a key metabolic hallmark in metastatic breast cancer cells and revealed that enforced nucleotide de novo synthesis was enough to drive the metastasis of breast cancer cells. An increased key metabolite of de novo synthesis, guanosine-5'-triphosphate (GTP), is able to generate more cyclic guanosine monophosphate (cGMP) to activate cGMP-dependent protein kinases PKG and downstream MAPK pathway, resulting in the increased tumor cell stemness and metastasis. Blocking de novo synthesis by silencing phosphoribosylpyrophosphate synthetase 2 (PRPS2) can effectively decrease the stemness of breast cancer cells and reduce the lung metastasis. More interestingly, in breast cancer patients, the level of plasma uric acid (UA), a downstream metabolite of purine, is tightly correlated with patient’s survival. Our study uncovered that increased de novo synthesis is a metabolic hallmark of metastatic breast cancer cells and its metabolites can regulate the signaling pathway to promote the stemness and metastasis of breast cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhe Lu ◽  
Lei Chen ◽  
Liangdong Li ◽  
Yiqun Cao

Brain metastasis is a major cause of death in breast cancer patients. The greatest event for brain metastasis is the breaching of the blood-brain barrier (BBB) by cancer cells. The role of exosomes in cancer metastasis is clear, whereas the role of exosomes in the integrity of the BBB is unknown. Here, we established a highly brain metastatic breast cancer cell line by three cycles of in vivo selection. The effect of exosomes on the BBB was evaluated in vitro by tracking, transepithelial/transendothelial electrical resistance (TEER), and permeability assays. BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the GEO dataset and verified by real-time PCR, TEER, permeability, and Transwell assays. The cells obtained by the in vivo selection showed higher brain metastatic capacity in vivo and higher migration and invasion in vitro compared to the parental cells. Exosomes from the highly brain metastatic cells were internalized by brain microvascular endothelial cells (BMECs), which reduced TEER and increased permeability of BBB. The exosomes derived from the highly metastatic cells promoted invasion of the breast cancer cells in the BBB model. lncRNA GS1-600G8.5 was highly expressed in the highly brain metastatic cells and their exosomes, as compared to the samples with reduced metastatic behavior. Silencing of GS1-600G8.5 significantly abrogated the BBB destructive effect of exosomes. GS1-600G8.5-deficient exosomes failed to promote the infiltration of cancer cells through the BBB. Furthermore, BMECs treated with GS1-600G8.5-deprived exosomes expressed higher tight junction proteins than those treated with the control exosomes. These data suggest the exosomes derived from highly brain metastatic breast cancer cells might destroy the BBB system and promote the passage of cancer cells across the BBB, by transferring lncRNA GS1-600G8.5.


Sign in / Sign up

Export Citation Format

Share Document