scholarly journals Autophagy of the Nucleus in Health and Disease

Author(s):  
Georgios Konstantinidis ◽  
Nektarios Tavernarakis

Nucleophagy is an organelle-selective subtype of autophagy that targets nuclear material for degradation. The macroautophagic delivery of micronuclei to the vacuole, together with the nucleus-vacuole junction-dependent microautophagic degradation of nuclear material, were first observed in yeast. Nuclear pore complexes and ribosomal DNA are typically excluded during conventional macronucleophagy and micronucleophagy, indicating that degradation of nuclear cargo is tightly regulated. In mammals, similarly to other autophagy subtypes, nucleophagy is crucial for cellular differentiation and development, in addition to enabling cells to respond to various nuclear insults and cell cycle perturbations. A common denominator of all nucleophagic processes characterized in diverse organisms is the dependence on the core autophagic machinery. Here, we survey recent studies investigating the autophagic processing of nuclear components. We discuss nucleophagic events in the context of pathology, such as neurodegeneration, cancer, DNA damage, and ageing.

2020 ◽  
Vol 21 (12) ◽  
pp. 4506 ◽  
Author(s):  
Florian Bo Otto ◽  
Michael Thumm

Nucleophagy, the selective subtype of autophagy that targets nuclear material for autophagic degradation, was not only shown to be a model system for the study of selective macroautophagy, but also for elucidating the role of the core autophagic machinery within microautophagy. Nucleophagy also emerged as a system associated with a variety of disease conditions including cancer, neurodegeneration and ageing. Nucleophagic processes are part of natural cell development, but also act as a response to various stress conditions. Upon releasing small portions of nuclear material, micronuclei, the autophagic machinery transfers these micronuclei to the vacuole for subsequent degradation. Despite sharing many cargos and requiring the core autophagic machinery, recent investigations revealed the aspects that set macro- and micronucleophagy apart. Central to the discrepancies found between macro- and micronucleophagy is the nucleus vacuole junction, a large membrane contact site formed between nucleus and vacuole. Exclusion of nuclear pore complexes from the junction and its exclusive degradation by micronucleophagy reveal compositional differences in cargo. Regarding their shared reliance on the core autophagic machinery, micronucleophagy does not involve normal autophagosome biogenesis observed for macronucleophagy, but instead maintains a unique role in overall microautophagy, with the autophagic machinery accumulating at the neck of budding vesicles.


2019 ◽  
Author(s):  
Arantxa Agote-Arán ◽  
Stephane Schmucker ◽  
Katerina Jerabkova ◽  
Inès Jmel Boyer ◽  
Alessandro Berto ◽  
...  

SummaryNucleoporins (Nups) build highly organized Nuclear Pore Complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs to regulate nucleocytoplasmic exchange. In the cytoplasm, a large excess of soluble Nups has been reported, but how their assembly is restricted to the NE is currently unknown. Here we show that Fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule and dynein-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and Fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup protein condensates. Likewise, several models of Fragile X syndrome (FXS), characterized by a loss of FMRP, also accumulate cytoplasmic Nup aggregates. These aggregate-containing cells display aberrant nuclear morphology and a delay in G1 cell cycle progression. Our results reveal an unexpected role for the FXR protein family and dynein in the spatial regulation of nucleoporin assembly.HighlightsCytoplasmic nucleoporins are assembled by Fragile X-related (FXR) proteins and dyneinFXR-Dynein pathway downregulation induces aberrant cytoplasmic aggregation of nucleoporinsCellular models of Fragile X syndrome accumulate aberrant cytoplasmic nucleoporin aggregates.FXR-Dynein pathway regulates nuclear morphology and G1 cell cycle progressioneTOC BlurbNucleoporins (Nups) form Nuclear Pore Complexes (NPCs) at the nuclear envelope. Agote-Arán at al. show how cells inhibit aberrant assembly of Nups in the cytoplasm and identify Fragile X-related (FXR) proteins and dynein that facilitate localization of Nups to the nuclear envelope and control G1 cell cycle progression.Graphical abstract


2003 ◽  
Vol 14 (9) ◽  
pp. 3730-3740 ◽  
Author(s):  
Ayelet Laronne ◽  
Shay Rotkopf ◽  
Asaf Hellman ◽  
Yosef Gruenbaum ◽  
Andrew C.G. Porter ◽  
...  

Human HT2-19 cells with a conditional cdk1 mutation stop dividing upon cdk1 inactivation and undergo multiple rounds of endoreplication. We show herein that major cell cycle events remain synchronized in these endoreplicating cells. DNA replication alternates with gap phases and cell cycle-specific cyclin E expression is maintained. Centrosomes duplicate in synchrony with chromosome replication, giving rise to polyploid cells with multiple centrosomes. Centrosome migration, a typical prophase event, also takes place in endoreplicating cells. The timing of these events is unaffected by cdk1 inactivation compared with normally dividing cells. Nuclear lamina breakdown, in contrast, previously shown to be dependent on cdk1, does not take place in endoreplicating HT2-19 cells. Moreover, breakdown of all other major components of the nuclear lamina, like the inner nuclear membrane proteins and nuclear pore complexes, seems also to depend on cdk1. Interestingly, the APC/C ubiquitin ligase is activated in these endoreplicating cells by fzr but not by fzy. The oscillations of interphase events are thus independent of cdk1 and of mitosis but may depend on APC/Cfzr activity.


2004 ◽  
Vol 167 (4) ◽  
pp. 605-611 ◽  
Author(s):  
Xiaolan Zhao ◽  
Chia-Yung Wu ◽  
Günter Blobel

Myosin-like proteins 1 and 2 (Mlp1 and Mlp2) form filaments attached to the nucleoplasmic side of the nuclear pore complexes via interaction with the nucleoporin Nup60. Here, we show that Mlps and Nup60, but not several other nucleoporins, are required to localize and stabilize a desumoylating enzyme Ulp1. Moreover, like Mlps, Ulp1 exhibits a unique asymmetric distribution on the nuclear envelope. Consistent with a role in regulating Ulp1, removal of either or both MLPs affects the SUMO conjugate pattern. We also show that deleting MLPs or the localization domains of Ulp1 results in DNA damage sensitivity and clonal lethality, the latter of which is caused by increased levels of 2-micron circle DNA. Epistatic and dosage suppression analyses further demonstrate that Mlps function upstream of Ulp1 in 2-micron circle maintenance and the damage response. Together, our results reveal that Mlps play important roles in regulating Ulp1 and subsequently affect sumoylation stasis, growth, and DNA repair.


2018 ◽  
Vol 20 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Arun Kumar ◽  
Priyanka Sharma ◽  
Mercè Gomar-Alba ◽  
Zhanna Shcheprova ◽  
Anne Daulny ◽  
...  

2000 ◽  
Vol 11 (11) ◽  
pp. 3937-3947 ◽  
Author(s):  
Jun Liu ◽  
Tom Rolef Ben-Shahar ◽  
Dieter Riemer ◽  
Millet Treinin ◽  
Perah Spann ◽  
...  

Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show thatlmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 423-430 ◽  
Author(s):  
Sheona P. Drummond ◽  
Sandra A. Rutherford ◽  
Helen S. Sanderson ◽  
Terry D. Allen

Nuclear pore complexes (NPCs) are the gateways for both active and passive bidirectional molecular transport between the nucleoplasm and cytoplasm. These mega-dalton assemblies are composed of multiple copies of approximately 30 distinct proteins termed nucleoporins. Higher eukaryotes display an “open” mitosis in which the NPCs, nuclear envelope, and lamina disassemble. During mitosis several nucleoporins are redistributed to kinetochores until they are recruited back to the periphery of chromatin as the NPCs are reassembled. Within this study we have developed and optimized the visualization of mammalian cells and their chromosome profiles throughout the cell-cycle. Close attention has been paid to the preservation of chromatin, membranes, and NPC structure to investigate the ultrastructural locations of specific proteins in both interphase and mitosis.


1998 ◽  
Vol 9 (10) ◽  
pp. 2839-2855 ◽  
Author(s):  
Robert R. West ◽  
Elena V. Vaisberg ◽  
Rubai Ding ◽  
Paul Nurse ◽  
J. Richard McIntosh

The “cut” mutants of Schizosaccharomyces pombeare defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11 +suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed thatcut11 + encodes a novel protein with seven putative membrane-spanning domains and homology to theSaccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis.


1999 ◽  
Vol 112 (21) ◽  
pp. 3649-3656 ◽  
Author(s):  
S. Smith ◽  
T. de Lange

Tankyrase is a human poly(ADP-ribose) polymerase that was initially identified through its interaction with the telomeric protein TRF1, a negative regulator of telomere length. In vitro poly(ADP-ribosyl)ation by tankyrase inhibits TRF1 binding to telomeric DNA suggesting a role for tankyrase in telomere function. We previously demonstrated that tankyrase co-localizes with TRF1 at the ends of human chromosomes in metaphase. Here we show that tankyrase localizes to additional subcellular sites in a cell cycle dependent manner. In interphase, tankyrase co-localized with TRF1 to telomeres, but in addition was found to reside at nuclear pore complexes, as evidenced by indirect immunofluorescence, subcellular fractionation and immunoelectron microscopy. At mitosis, concomitant with nuclear envelope breakdown and nuclear pore complex disassembly, tankyrase was found to relocate around the pericentriolar matrix of mitotic centrosomes. This complex staining pattern along with the observation that tankyrase did not contain a nuclear localization signal suggested that its telomeric localization might be regulated, perhaps by TRF1. Indeed, localization of exogenously-expressed tankyrase to telomeres was dependent upon co-transfection with TRF1. These data indicate that the subcellular localization of tankyrase can be regulated by both the cell cycle and TRF1.


2017 ◽  
Author(s):  
Arun Kumar ◽  
Priyanka Sharma ◽  
Zhanna Shcheprova ◽  
Anne Daulny ◽  
Trinidad Sanmartín ◽  
...  

SummaryThe acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remains unclear. We have uncovered a mechanism regulating NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the CLN2 gene in the following G1 phase. Hos3-dependent coordination of both events restrains Start in daughter but not in mother cells. We propose that deacetylation modulates transport-dependent and - independent functions of NPCs, leading to differential cell cycle progression in mother and daughter cells. Similar mechanisms might regulate NPC functions in specific cell types and/or cell cycle stages in multicellular organisms.


Sign in / Sign up

Export Citation Format

Share Document