scholarly journals Enhanced Plasmonic Resonance Characteristics of AgNRs–Gold Film Hybrid System

2021 ◽  
Vol 8 ◽  
Author(s):  
Yanping Yin ◽  
Jin Zhu ◽  
Zaoji Wang ◽  
Guojun Ma ◽  
Huining Yuan ◽  
...  

In recent years, the plasma gap resonance maintained by metal-film-coupled nanostructures has attracted extensive attention. This mainly originates from its flexible control of the spectral response and significantly enhanced field strength at the nanoparticle–film junction. In the present study, the tunability of local surface plasmon resonances (LSPRs) of nanorods coupled to a gold film is studied theoretically. To this end, the plasmonic resonances in the nanostructure of individual silver nanorod–gold film (AgNR-film) with different parameters are investigated. Obtained results show that the refractive index sensitivity (S) of nanostructures to the environment increases as the aspect ratio (Ar) of nanostructures increase. It is found that when the aspect ratio (Ar) is set to 3.5, the figure of merit (FOM) is the highest. Moreover, the variation in the gap distances of the nanorod monomer–gold film, electric field distribution of nanorods dimer, and the corresponding impact on the gold film are studied. It is concluded that the gap size of nanostructures has an exponential correlation with the resonance wavelength. Considering the remarkable influence of the gap size and the surrounding medium environment on the spectral shift of AgNR-film nanostructures, potential applications of the structure as a refractive index sensor and biomolecule measurement are proposed.

2020 ◽  
Vol 16 (5) ◽  
pp. 715-720
Author(s):  
Ali Elrashidi

Biomedical sensor that sense different molecules with a high refractive index sensitivity is proposed in this work. Plasmonic nanospiral antenna is mounted on a top surface of an optical fiber to reflect the incident optical signal back to the fiber. The reflected signal depends on the nanospiral antenna material, dimensions and the surrounding medium. Using streptavidin molecule, the nanospiral antenna have been simulated based on finite difference time domain method to optimize its dimensions. The optimum dimensions are 10 nm, 55 nm and 40 nm for inner-outer thicknesses and height respectively. The introduced biosensor can detect different molecules based on surface plasmonic resonance, which depends on the shifting of the peak wavelength according to the molecules type. The detected molecules are Streptavidin, Urease, Uricase molecules and Glucose oxidase and Cholesterol oxidase enzymes with a high sensitivity. The maximum refractive index sensitivity is obtained when sensing cholesterol oxidase molecules with 3028 nm/RIU at 3.58 μm peak wavelength. Figure of merit and quality factor are also calculated for all detected molecules. Finally, electric field and optical power, before and after binding, of the reflected signal are illustrated and discussed.


2021 ◽  
Author(s):  
Sanfeng Gu ◽  
Wei Sun ◽  
Meng Li ◽  
Ming Deng

Abstract A dual-core and dual D-shaped photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor with silver and Aluminum Nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36~1.42. In addition, a maximum wavelength sensitivity of 13400 nm/RIU with the corresponding RI resolution of 7.46×10-6 RIU is obtained in the RI range of 1.41~1.42. The proposed sensor with the merits of high sensitivity, low cost and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring and biochemical analysis.


Author(s):  
Monika Kiroriwal ◽  
Poonam Singal

Surface plasmon resonance (SPR)-based single-core photonic crystal fiber (PCF) biosensor is investigated with external gold coating. All the geometrical parameters such as a gold layer, an analyte layer, a lattice period and cladding air holes are optimized to enhance the sensing ability of the sensor by introducing the finite element method. The designed sensor is able to achieve the highest amplitude sensitivity (AS) of 2258.95 RIU[Formula: see text] with an acceptable refractive index sensitivity (RIS) of 6000 nm/RIU over the analyte refractive index (ARI) span of 1.31–1.40. This sensor can detect a slight index alteration in the sensing medium using a resolution of [Formula: see text] and a high figure of merit (FOM) of 79.01. With the enhanced modal behavior with simple geometry, the resulting sensor can be suitable for real-time monitoring in biological, biochemical and bio-imaging applications.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4489 ◽  
Author(s):  
Chunlian Cen ◽  
Hang Lin ◽  
Jing Huang ◽  
Cuiping Liang ◽  
Xifang Chen ◽  
...  

In the present study, we design a tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. The calculations prove that the nanoring-strip have two transmission dips. By changing the strip length L of the present structure, we find that the nanoring-strip graphene arrays have a wide range of resonances (resonance wavelength increases from 17.73 μm to 28.15 μm). When changing the sensing medium refractive index nmed, the sensitivity of mode A and B can reach 2.97 μm/RIU and 5.20 μm/RIU. By changing the doping level ng, we notice that the transmission characteristics can be tuned flexibly. Finally, the proposed sensor also shows good angle tolerance for both transverse magnetic (TM) and transverse electric (TE) polarizations. The proposed nanoring-strip graphene arrays along with the numerical results could open a new avenue to realize various tunable plasmon devices and have a great application prospect in biosensing, detection, and imaging.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3782
Author(s):  
Xin Yan ◽  
Rao Fu ◽  
Tonglei Cheng ◽  
Shuguang Li

This paper proposes a highly sensitive surface plasmon resonance (SPR) refractive index sensor based on the photonic crystal fiber (PCF). The optical properties of the PCF are investigated by modulating the refractive index of a liquid analyte. The finite element method (FEM) is used to calculate and analyze the PCF structure. After optimization, the fiber can achieve high linearity of 0.9931 and an average refractive index sensitivity of up to 14,771.4 nm/RIU over a refractive index range from 1.47 to 1.52, with the maximum wavelength sensitivity of 18,000.5 nm/RIU. The proposed structure can be used in various sensing applications, including biological monitoring, environmental monitoring, and chemical production with the modification and analysis of the proposed structure.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1399 ◽  
Author(s):  
Chung-Ting Chou Chao ◽  
Yuan-Fong Chou Chau ◽  
Hung Ji Huang ◽  
N. T. R. N. Kumara ◽  
Muhammad Raziq Rahimi Kooh ◽  
...  

We numerically and theoretically investigate a highly sensitive and tunable plasmonic refractive index sensor that is composed of a metal-insulator-metal waveguide with a side-coupled nanoring, containing silver nanorods using the finite element method. Results reveal that the presence of silver nanorods in the nanoring has a significant impact on sensitivity and tunability performance. It gives a flexible way to tune the system response in the proposed structure. Our designed sensor has a sensitivity of 2080 nm/RIU (RIU is the refractive index unit) along with a figure of merit and a quality factor of 29.92 and 29.67, respectively. The adequate refractive index sensitivity can increase by adding the silver nanorods in a nanoring, which can induce new surface plasmon polaritons (SPPs) modes that cannot be found by a regular nanoring. For a practical application, a valid introduction of silver nanorods in the nanoring can dramatically reduce the dimension of the proposed structure without sacrificing performance.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3666 ◽  
Author(s):  
Bin Li ◽  
Tonglei Cheng ◽  
Junxin Chen ◽  
Xin Yan

A surface plasmon resonance (SPR) liquid refractive index sensor based on photonic crystal fiber (PCF) is proposed. The PCF is made of the exposed core structure, and the gold film is formed by electron beam evaporation within its defects. The sensitivity of the sensor is improved by coating graphene on the surface of the gold film. The experimental results show that the sensitivity of the sensor is increased by 390 nm/RIU after the introduction of graphene, and finally to 2290 nm/RIU. The experiment and simulation have a good consistency. Significantly, the sensor can be reused, and the measurement accuracy can be maintained.


Sign in / Sign up

Export Citation Format

Share Document