scholarly journals Drug Delivery Systems for Hedgehog Inhibitors in the Treatment of SHH-Medulloblastoma

2021 ◽  
Vol 9 ◽  
Author(s):  
Miriam Caimano ◽  
Ludovica Lospinoso Severini ◽  
Elena Loricchio ◽  
Paola Infante ◽  
Lucia Di Marcotullio

Medulloblastoma (MB) is a highly aggressive pediatric tumor of the cerebellum. Hyperactivation of the Hedgehog (HH) pathway is observed in about 30% of all MB diagnoses, thereby bringing out its pharmacological blockade as a promising therapeutic strategy for the clinical management of this malignancy. Two main classes of HH inhibitors have been developed: upstream antagonists of Smoothened (SMO) receptor and downstream inhibitors of GLI transcription factors. Unfortunately, the poor pharmacological properties of many of these molecules have limited their investigation in clinical trials for MB. In this minireview, we focus on the drug delivery systems engineered for SMO and GLI inhibitors as a valuable approach to improve their bioavailability and efficiency to cross the blood–brain barrier (BBB), one of the main challenges in the treatment of MB.

Author(s):  
Navneet Sharma ◽  
Sabna Kotta ◽  
Mohd Aleem ◽  
Shubham Singh ◽  
Rakesh Kumar Sharma

In the last decade, there has been a mounting concern in lipid-based formulations to deliver water-soluble drugs. Lipid-based drug delivery systems are one of the budding and promising technologies designed to tackle the poor bioavailability problems. This chapter stresses the different mechanisms of lipophilic drug absorption along with its advantages and limitations. It points out the different mechanisms of how lipid-based excipients and the different formulations interact with the absorption process. This review provides a comprehensive summary about the lipid formulation classification scheme (LFCS), a guide for the selection of appropriate formulation and commonly used excipients for lipid-based formulations, along with the important factors to be considered in formulation design and excipient selection. This review also focuses on the formulation of solid lipid-based formulations, important evaluation aspects, and commercial formulations available for the purpose.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 3 ◽  
Author(s):  
Fadwa Odeh ◽  
Hamdi Nsairat ◽  
Walhan Alshaer ◽  
Mohammad A. Ismail ◽  
Ezaldeen Esawi ◽  
...  

Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.


Author(s):  
Arti Patel ◽  
Yashwant V. Pathak

Nanomedicine has vastly improved the treatment and diagnosis of many cardiovascular conditions such as atherosclerosis, myocardial ischemia, myocardial infarction, restenosis, and thrombosis. A few nanoparticle drug delivery systems that are currently being tested and used in clinical trials include lipid-based drug delivery, controlled drug release, and specific targeting. The chapter describes the various drug delivery methods, the various nanoparticles, and their application on specific cardiovascular conditions. This chapter compiles examples of specific clinical trials that are being conducted, using nanoparticles for therapy of cardiovascular conditions.


2021 ◽  
Vol 22 (17) ◽  
pp. 9149
Author(s):  
Denis V. Voronin ◽  
Anatolii A. Abalymov ◽  
Yulia I. Svenskaya ◽  
Maria V. Lomova

The increased research activity aiming at improved delivery of pharmaceutical molecules indicates the expansion of the field. An efficient therapeutic delivery approach is based on the optimal choice of drug-carrying vehicle, successful targeting, and payload release enabling the site-specific accumulation of the therapeutic molecules. However, designing the formulation endowed with the targeting properties in vitro does not guarantee its selective delivery in vivo. The various biological barriers that the carrier encounters upon intravascular administration should be adequately addressed in its overall design to reduce the off-target effects and unwanted toxicity in vivo and thereby enhance the therapeutic efficacy of the payload. Here, we discuss the main parameters of remote-controlled drug delivery systems: (i) key principles of the carrier selection; (ii) the most significant physiological barriers and limitations associated with the drug delivery; (iii) major concepts for its targeting and cargo release stimulation by external stimuli in vivo. The clinical translation for drug delivery systems is also described along with the main challenges, key parameters, and examples of successfully translated drug delivery platforms. The essential steps on the way from drug delivery system design to clinical trials are summarized, arranged, and discussed.


2021 ◽  
pp. 615-642
Author(s):  
Adem Sahin ◽  
Cengizhan Ceylan ◽  
Senem Ertan-Ahmed

Author(s):  
Arti Patel ◽  
Yashwant V. Pathak

Nanomedicine has vastly improved the treatment and diagnosis of many cardiovascular conditions such as atherosclerosis, myocardial ischemia, myocardial infarction, restenosis, and thrombosis. A few nanoparticle drug delivery systems that are currently being tested and used in clinical trials include lipid-based drug delivery, controlled drug release, and specific targeting. The chapter describes the various drug delivery methods, the various nanoparticles, and their application on specific cardiovascular conditions. This chapter compiles examples of specific clinical trials that are being conducted, using nanoparticles for therapy of cardiovascular conditions.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3668 ◽  
Author(s):  
Vanessa Poscher ◽  
Yolanda Salinas

The last few years of enhancing the design of hybrid mesoporous organosilica nanoparticleshas allowed their degradation under specific pathologic conditions, which finally is showing a lightin their potential use as drug delivery systems towards clinical trials. Nevertheless, the issueof controlling the degradation on-demand at cellular level still remains a major challenge, even if ithas lately been addressed through the incorporation of degradable organo-bridged alkoxysilanesinto the silica framework. On this basis, this mini review covers some of the most recent examplesof dierent degradable organosilica nanomaterials with potential application in nanomedicine,from degradable non-porous to mesoporous organosilica nanoparticles (MONs), functionalized withresponsive molecular gates, and also the very promising degradable periodic mesoporous organosilicamaterials (PMOs) only consisting of organosilica bridges.


2016 ◽  
Vol 4 (42) ◽  
pp. 6758-6772 ◽  
Author(s):  
Liangliang Dai ◽  
Junjie Liu ◽  
Zhong Luo ◽  
Menghuan Li ◽  
Kaiyong Cai

The review highlights the main targeted drug delivery systems for tumor therapy, including the targeting sites, strategies, mechanisms and preclinical/clinical trials.


Sign in / Sign up

Export Citation Format

Share Document