scholarly journals Li-Rich Antiperovskite/Nitrile Butadiene Rubber Composite Electrolyte for Sheet-Type Solid-State Lithium Metal Battery

2021 ◽  
Vol 9 ◽  
Author(s):  
Juncao Bian ◽  
Huimin Yuan ◽  
Muqing Li ◽  
Sifan Ling ◽  
Bei Deng ◽  
...  

Lithium-rich antiperovskites (LiRAPs) hold great promise to be the choice of solid-state electrolytes (SSEs) owing to their high ionic conductivity, low activation energy, and low cost. However, processing sheet-type solid-state Li metal batteries (SSLiB) with LiRAPs remains challenging due to the lack of robust techniques for battery processing. Herein, we propose a scalable slurry-based procedure to prepare a flexible composite electrolyte (CPE), in which LiRAP (e.g., Li2OHCl0.5Br0.5, LOCB) and nitrile butadiene rubber (NBR) serve as an active filler and as a polymer scaffold, respectively. The low-polar solvent helps to stabilize the LiRAP phase during slurry processing. It is found that the addition of LOCB into the NBR polymer enhances the Li ion conductivity for 2.3 times at 60°C and reduces the activation energy (max. 0.07 eV). The as-prepared LOCB/NBR CPE film exhibits an improved critical current of 0.4 mA cm−2 and can stably cycle for over 1000 h at 0.04 mA cm−2 under 60°C. In the SSLiB with the sheet-type configuration of LiFePO4(LFP)||LOCB/NBR CPE||Li, LFP exhibits a capacity of 137 mAh/g under 60 at 0.1°C. This work delivers an effective strategy for fabrication of LiRAP-based CPE film, advancing the LiRAP-family SSEs toward practical applications.

Author(s):  
Jiawei Wu ◽  
Jing Chen ◽  
Xiaodong Wang ◽  
An'an Zhou ◽  
Zhenglong Yang

For the higher safety and energy density, solid-state electrolyte with better mechanical strength, thermal and electrochemical stability is a perfect choice. To improve the performance of PEO, usage of low-cost...


2018 ◽  
Vol 54 (72) ◽  
pp. 10040-10043 ◽  
Author(s):  
Marco Amores ◽  
Peter J. Baker ◽  
Edmund J. Cussen ◽  
Serena A. Corr

A novel Na-rich double perovskite, Na1.5La1.5TeO6, is reported. The transport properties, explored at the macroscopic and local level, reveal a low activation energy barrier for Na+ diffusion and great promise for use as an electrolyte for all solid-state Na-batteries.


Author(s):  
Yanhui Sun ◽  
Zong-Ge Li ◽  
Yinglong Wu ◽  
Jinrui Tian ◽  
Yaqun Wang ◽  
...  

The low-cost synthesis of highly dispersed non-noble metal-nitrogen-carbon (MNC) electrocatalysts hinders their practical applications. Here, we have developed a cost/time-efficient synthesis method for MNC with highly dispersed metal sites, using...


2008 ◽  
Vol 80 (11) ◽  
pp. 2241-2258 ◽  
Author(s):  
Jihuai Wu ◽  
Zhang Lan ◽  
Sanchun Hao ◽  
Pingjiang Li ◽  
Jianming Lin ◽  
...  

Dye-sensitized solar cells (DSSCs) have aroused intense interest over the past decade owing to their low cost and simple preparation procedures. Much effort has been devoted to the study of electrolytes that enable light-to-electrical power conversion for DSSC applications. This review focuses on recent progress in the field of liquid, solid-state, and quasi-solid-state electrolytes for DSSCs. It is believed that quasi-solid-state electrolytes, especially those utilizing thermosetting gels, are particularly applicable for fabricating high photoelectric performance and long-term stability of DSSCs in practical applications.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 520-532
Author(s):  
Xiaoliang Zhao ◽  
Dayong Huang ◽  
Chinomso M. Ewulonu ◽  
Min Wu ◽  
Chao Wang ◽  
...  

Abstract The research on facile, low-cost, and green process for the uniform dispersion of graphene nanoplatelets (GNPs) into polymer matrix has always been a considerable challenge in practical applications. The Van der Waals interaction between graphene layers can easily cause aggregation of the nanofillers. Here, we propose a new method to solve this problem by involving solid-state shear mixing to obtain a well-dispersed nanocomposite. The comprehensive properties of nanocomposite, including antistatic properties, mechanical properties, and thermal stability, can be significantly enhanced by this method. The surface resistivity of the nanocomposite can be up to 2.4 × 107 Ω sq−1 under 1 wt% content of GNPs, which is significantly better than the value obtained by conventional melting compounding and meets the required standard of less than 3 × 108 Ω sq−1 for actual application antistatic materials. The impact strength of the nanocomposite increased by 120.8% when compared with neat PP. At the same time, the heat distortion temperature and initial decomposition temperature of the nanocomposite with only 0.5 wt% content of GNPs are improved by 11.7°C and 110°C, respectively. In addition, GNPs is a heterogeneous nucleating agent that leads PP to emerge β crystal form. This study provides an effective and practical reference for the broad-scale industrial preparation of polymer-based graphene nanocomposites.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 155
Author(s):  
Gyung-Hyun Kim ◽  
Young-Il Moon ◽  
Jae-Kap Jung ◽  
Myung-Chan Choi ◽  
Jong-Woo Bae

In neat nitrile butadiene rubber (NBR), three relaxation processes were identified by impedance spectroscopy: α and α′ processes and the conduction contribution. We investigated the effects of different carbon black (CB) and silica fillers with varying filler content on the dielectric relaxations in NBR by employing a modified dispersion analysis program that deconvolutes the corresponding processes. The central frequency for the α′ process with increasing high abrasion furnace (HAF) CB filler was gradually upshifted at room temperature, while the addition of silica led to a gradual downshift of the center frequency. The activation energy behavior for the α′ process was different from that for the central frequency. The use of HAF CB led to a rapid increase in DC conductivity, resulting from percolation. The activation energy for the DC conductivity of NBRs with HAF CB decreased with increasing filler, which is consistent with that reported in different groups.


2020 ◽  
Vol 35 (2) ◽  
pp. 221-228
Author(s):  
S.-B. Chen ◽  
T.-X. Li ◽  
S.-H. Wan ◽  
X. Huang ◽  
S.-W. Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document