scholarly journals Near-Infrared-II Bioimaging for in Vivo Quantitative Analysis

2021 ◽  
Vol 9 ◽  
Author(s):  
Sha Yang ◽  
Xiaofeng Tan ◽  
Li Tang ◽  
Qinglai Yang

Near-Infrared-II (NIR-II) bioimaging is a newly emerging visualization modality in real-time investigations of biological processes research. Owning to advances in reducing photon scattering and low tissue autofluorescence levels in NIR-II region (1,000–1700 nm), NIR-II bioimaging affords high resolution with increasing tissue penetration depth, and it shows greater application potential for in vivo detection to obtain more detailed qualitative and quantitative parameters. Herein, this review summarizes recent progresses made on NIR-II bioimaging for quantitative analysis. These emergences of various NIR-II fluorescence, photoacoustic (PA), luminescence lifetime imaging probes and their quantitative analysis applications are comprehensively discussed, and perspectives on potential challenges facing in this direction are also raised.

2021 ◽  
Author(s):  
Mengyao Zhao ◽  
Benhao Li ◽  
Hongxin Zhang ◽  
Fan Zhang

Fluorescence imaging in the second near-infrared (NIR-II, 1000–1700 nm) window has exhibited advantages of high optical resolution at deeper penetration (ca. 5–20 mm) in bio-tissues owing to the reduced photon scattering and tissue autofluorescence.


2019 ◽  
Vol 10 (15) ◽  
pp. 4227-4235 ◽  
Author(s):  
Yingying Ning ◽  
Shengming Cheng ◽  
Jing-Xiang Wang ◽  
Yi-Wei Liu ◽  
Wei Feng ◽  
...  

Lanthanide complex was successfully applied in the design of pH-responsive NIR τ probe for quantitative in vivo imaging.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2150
Author(s):  
Dilip K. Rai ◽  
Katerina Tzima

Berries have been widely assessed for their beneficial health effects, predominately due to their high (poly)phenol content of anthocyanins and ellagitannins. After ellagitannins and ellagic acid are metabolized by the gut microbiome, a class of compounds known as urolithins are produced, which exert potential advantageous health effects. Anthocyanins, on the other hand, undergo a complex metabolic pathway after their interaction with microbial and endogenous enzymes, forming a broad range of metabolites and catabolic products. In most cases, in vitro models and cell lines are used to generate metabolites, whereas their assessment in vivo is currently limited. Thus far, several analytical methods have been developed for the qualitative and quantitative analysis of phenolic metabolites in berries, including liquid chromatography, mass spectrometry, and other hyphenated techniques, and have been undoubtedly valuable tools for the detailed metabolite characterization and profiling. In this review, a compilation of studies providing information on the qualitative and quantitative analysis of (poly)phenol metabolites in blackberries and raspberries after the utilization of in vitro and in vivo methods is presented. The different analytical techniques employed are assessed, focusing on the fate of the produced metabolic compounds in order to provide evidence on their characteristics, formation, and beneficial effects.


2019 ◽  
Vol 26 (21) ◽  
pp. 4029-4041 ◽  
Author(s):  
Hai-Yan Wang ◽  
Huisheng Zhang ◽  
Siping Chen ◽  
Yi Liu

Luminescence bioimaging is widely used for noninvasive monitoring of biological targets in real-time with high temporal and spatial resolution. For efficient bioimaging in vivo, it is essential to develop smart organic dye platforms. Fluorescein (FL), a traditional dye, has been widely used in the biological and clinical studies. However, visible excitation and emission limited their further application for in vivo bioimaging. Nearinfrared (NIR) dyes display advantages of bioimaging because of their minimum absorption and photo-damage to biological samples, as well as deep tissue penetration and low auto-luminescence from background in the living system. Thus, some great developments of near-infrared fluorescein-inspired dyes have emerged for bioapplication in vitro and in vivo. In this review, we highlight the advances in the development of the near-infrared chemodosimeters for detection and bioimaging based on the modification of fluoresceininspired dyes naphtho-fluorescein (NPF) and cyanine-fluorescein (Cy-FL).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Na Xie ◽  
Ya Hou ◽  
Shaohui Wang ◽  
Xiaopeng Ai ◽  
Jinrong Bai ◽  
...  

Abstract Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400–750 nm) and NIR-I (750–900 nm) imaging, the NIR-II has a longer wavelength of 1000–1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.


Author(s):  
Yaxi Li ◽  
Hongli Zhou ◽  
Renzhe Bi ◽  
Xiuting Li ◽  
Menglei Zha ◽  
...  

Fluorescence imaging in the second near-infrared window (NIR-II) has been an emerging technique in diverse in vivo applications with high sensitivity/resolution and deep tissue penetration. To date, the designing principle...


Sign in / Sign up

Export Citation Format

Share Document