scholarly journals Construction of UiO-66/Bi4O5Br2 Type-II Heterojunction to Boost Charge Transfer for Promoting Photocatalytic CO2 Reduction Performance

2021 ◽  
Vol 9 ◽  
Author(s):  
Dongsheng Li ◽  
Bichen Zhu ◽  
Zhongti Sun ◽  
Qinqin Liu ◽  
Lele Wang ◽  
...  

One of the basic challenges of CO2 photoreduction is to develop efficient photocatalysts, and the construction of heterostructure photocatalysts with intimate interfaces is an effective strategy to enhance interfacial charge transfer for realizing high photocatalytic activity. Herein, a novel UiO-66/Bi4O5Br2 heterostructure photocatalyst was constructed by depositing UiO-66 nanoparticles with octahedral morphology over the Bi4O5Br2 nanoflowers assembled from the Bi4O5Br2 nanosheets via an electrostatic self-assembly method. A tight contact interface and a built-in electric field were formed between the UiO-66 and the Bi4O5Br2, which was conducive to the photo-electrons transfer from the Bi4O5Br2 to the UiO-66 and the formation of a type-II heterojunction with highly efficient charge separation. As a result, the UiO-66/Bi4O5Br2 exhibited improved photocatalytic CO2 reduction performance with a CO generation rate of 8.35 μmol h−1 g−1 without using any sacrificial agents or noble co-catalysts. This work illustrates an applicable tactic to develop potent photocatalysts for clean energy conversion.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Parul Verma ◽  
Ashish Singh ◽  
Faruk Ahamed Rahimi ◽  
Pallavi Sarkar ◽  
Sukhendu Nath ◽  
...  

AbstractThe much-needed renewable alternatives to fossil fuel can be achieved efficiently and sustainably by converting solar energy to fuels via hydrogen generation from water or CO2 reduction. Herein, a soft processable metal-organic hybrid material is developed and studied for photocatalytic activity towards H2 production and CO2 reduction to CO and CH4 under visible light as well as direct sunlight irradiation. A tetrapodal low molecular weight gelator (LMWG) is synthesized by integrating tetrathiafulvalene (TTF) and terpyridine (TPY) derivatives through amide linkages and results in TPY-TTF LMWG. The TPY-TTF LMWG acts as a linker, and self-assembly of this gelator molecules with ZnII ions results in a coordination polymer gel (CPG); Zn-TPY-TTF. The Zn-TPY-TTF CPG shows high photocatalytic activity towards H2 production (530 μmol g−1h−1) and CO2 reduction to CO (438 μmol g−1h−1, selectivity > 99%) regulated by charge-transfer interactions. Furthermore, in situ stabilization of Pt nanoparticles on CPG (Pt@Zn-TPY-TTF) enhances H2 evolution (14727 μmol g−1h−1). Importantly, Pt@Zn-TPY-TTF CPG produces CH4 (292 μmol g−1h−1, selectivity > 97%) as CO2 reduction product instead of CO. The real-time CO2 reduction reaction is monitored by in situ DRIFT study, and the plausible mechanism is derived computationally.


2022 ◽  
Vol 23 (1) ◽  
pp. 543
Author(s):  
Magdalena Kaźmierczak ◽  
Bartosz Trzaskowski ◽  
Silvio Osella

An artificial leaf is a concept that not only replicates the processes taking place during natural photosynthesis but also provides a source of clean, renewable energy. One important part of such a device are molecules that stabilize the connection between the bioactive side and the electrode, as well as tune the electron transfer between them. In particular, nitrilotriacetic acid (NTA) derivatives used to form a self-assembly monolayer chemisorbed on a graphene monolayer can be seen as a prototypical interface that can be tuned to optimize the electron transfer. In the following work, interfaces with modifications of the metal nature, backbone saturation, and surface coverage density are presented by means of theoretical calculations. Effects of the type of the metal and the surface coverage density on the electronic properties are found to be key to tuning the electron transfer, while only a minor influence of backbone saturation is present. For all of the studied interfaces, the charge transfer flow goes from graphene to the SAM. We suggest that, in light of the strength of electron transfer, Co2+ should be considered as the preferred metal center for efficient charge transfer.


2020 ◽  
Vol 8 (40) ◽  
pp. 20963-20969 ◽  
Author(s):  
Wei Chen ◽  
Guo-Bo Huang ◽  
Hao Song ◽  
Jian Zhang

An efficient charge transfer channel for improving the photocatalytic water splitting activity and durability of CdS without sacrificial agents.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chunzheng Lv ◽  
Lirong He ◽  
Jiahong Tang ◽  
Feng Yang ◽  
Chuhong Zhang

AbstractAs an important photoconductive hybrid material, perylene/ZnO has attracted tremendous attention for photovoltaic-related applications, but generally faces a great challenge to design molecular level dispersed perylenes/ZnO nanohybrids due to easy phase separation between perylenes and ZnO nanocrystals. In this work, we reported an in-situ reaction method to prepare molecular level dispersed H-aggregates of perylene bisimide/ZnO nanorod hybrids. Surface photovoltage and electric field-induced surface photovoltage spectrum show that the photovoltage intensities of nanorod hybrids increased dramatically for 100 times compared with that of pristine perylene bisimide. The enhancement of photovoltage intensities resulting from two aspects: (1) the photo-generated electrons transfer from perylene bisimide to ZnO nanorod due to the electric field formed on the interface of perylene bisimide/ZnO; (2) the H-aggregates of perylene bisimide in ZnO nanorod composites, which is beneficial for photo-generated charge separation and transportation. The introduction of ordered self-assembly thiol-functionalized perylene-3,4,9,10-tetracarboxylic diimide (T-PTCDI)/ ZnO nanorod composites induces a significant improvement in incident photo-to-electron conversion efficiency. This work provides a novel mentality to boost photo-induced charge transfer efficiency, which brings new inspiration for the preparation of the highly efficient solar cell.


Author(s):  
Taehyun Kwon ◽  
Heesu Yang ◽  
Minki Jun ◽  
Taekyung Kim ◽  
Jinwhan Joo ◽  
...  

The oxygen evolution reaction (OER) requires a large overpotential which undermines the stability of electrocatalysts, typically IrOx or RuOx. RuOx is particularly vulnerable to high overpotential in acidic media, due...


2021 ◽  
Author(s):  
Yan-Hong Zou ◽  
Hai-Ning Wang ◽  
Xing Meng ◽  
Hong-Xu Sun ◽  
Zi-Yan Zhou

Different synthetic approaches give birth to different structures, which result in varied photocatalytic performances.


Sign in / Sign up

Export Citation Format

Share Document