scholarly journals Metabolic Reprogramming in the Heart and Lung in a Murine Model of Pulmonary Arterial Hypertension

Author(s):  
Jose L. Izquierdo-Garcia ◽  
Teresa Arias ◽  
Yeny Rojas ◽  
Victoria Garcia-Ruiz ◽  
Arnoldo Santos ◽  
...  
Author(s):  
Pedro J. Curi-Curi ◽  
Maria C. Castillo-Hernandez ◽  
Miguel Chavez-Martinez ◽  
Lilia Loredo-Mendoza ◽  
Eduardo Rios-Garcia ◽  
...  

2019 ◽  
Vol 133 (9) ◽  
pp. 1085-1096 ◽  
Author(s):  
Xue-liang Zhou ◽  
Zhi-bo Liu ◽  
Rong-rong Zhu ◽  
Huang Huang ◽  
Qi-rong Xu ◽  
...  

Abstract Nuclear receptor binding SET domain 2 (NSD2)-mediated metabolic reprogramming has been demonstrated to regulate oncogenesis via catalyzing the methylation of histones. The present study aimed to investigate the role of NSD2-mediated metabolic abnormality in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH rat model was established and infected with adeno-associated virus carrying short hairpin RNA (shRNA) targeting NSD2. Hemodynamic parameters, ventricular function, and pathology were evaluated by microcatheter, echocardiography, and histological analysis. Metabolomics changes in lung tissue were analyzed by LC–MS. The results showed that silencing of NSD2 effectively ameliorated MCT-induced PAH and right ventricle dysfunction, and partially reversed pathological remodeling of pulmonary artery and right ventricular hypertrophy. In addition, the silencing of NSD2 markedly reduced the di-methylation level of H3K36 (H3K36me2 level) and inhibited autophagy in pulmonary artery. Non-targeted LC–MS based metabolomics analysis indicated that trehalose showed the most significant change in lung tissue. NSD2-regulated trehalose mainly affected ABC transporters, mineral absorption, protein digestion and absorption, metabolic pathways, and aminoacyl-tRNA biosynthesis. In conclusion, we reveal a new role of NSD2 in the pathogenesis of PAH related to the regulation of trehalose metabolism and autophagy via increasing the H3K36me2 level. NSD2 is a promising target for PAH therapy.


2020 ◽  
Vol 9 (2) ◽  
pp. 443
Author(s):  
Mathews Valuparampil Varghese ◽  
Joel James ◽  
Cody A Eccles ◽  
Maki Niihori ◽  
Olga Rafikova ◽  
...  

Vascular remodeling is considered a key event in the pathogenesis of pulmonary arterial hypertension (PAH). However, mechanisms of gaining the proliferative phenotype by pulmonary vascular cells are still unresolved. Due to well-established pyruvate dehydrogenase (PDH) deficiency in PAH pathogenesis, we hypothesized that the activation of another branch of pyruvate metabolism, anaplerosis, via pyruvate carboxylase (PC) could be a key contributor to the metabolic reprogramming of the vasculature. In sugen/hypoxic PAH rats, vascular proliferation was found to be accompanied by increased activation of Akt signaling, which upregulated membrane Glut4 translocation and caused upregulation of hexokinase and pyruvate kinase-2, and an overall increase in the glycolytic flux. Decreased PDH activity and upregulation of PC shuttled more pyruvate to oxaloacetate. This results in the anaplerotic reprogramming of lung vascular cells and their subsequent proliferation. Treatment of sugen/hypoxia rats with the PC inhibitor, phenylacetic acid 20 mg/kg, starting after one week from disease induction, significantly attenuated right ventricular systolic pressure, Fulton index, and pulmonary vascular cell proliferation. PC inhibition reduced the glycolytic shift by attenuating Akt-signaling, glycolysis, and restored mitochondrial pyruvate oxidation. Our findings suggest that targeting PC mediated anaplerosis is a potential therapeutic intervention for the resolution of vascular remodeling in PAH.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
C Ferreira ◽  
M Abreu ◽  
G Castro ◽  
L Goncalves ◽  
R Baptista ◽  
...  

Abstract Background Idiopathic pulmonary arterial hypertension (iPAH) is a rare and chronic disease associated with poor outcomes. Previously considered a disease restricted to the pulmonary circulation, PAH is now being recognized as a systemic disorder that is associated with metabolic dysfunction. The aim of this study is to analyze the metabolic reprogramming in the lung and peripheral blood mononuclear cell (PBMCs) of iPAH patients and explore their potential roles in PAH pathophysiology. Methods Five independent datasets, containing transcriptomic data of human PBMCs (GSE22356 and GSE33463) and lung (GSE48149 GSE113439 and GSE117261) samples, from 139 iPAH patients and 96 healthy controls, were downloaded at the GEO database. In each dataset, the samples were normalized and a pair-wise comparison between control and iPAH samples was performed using limma package, for the R programming language. Genes with a p-value lower than 0.05 were considered differentially expressed between the two groups. A subset of metabolism related genes was selected, and their expression was compared across the datasets. Results Among the 13 genes with differential expression identified, only 10 had a coherent expression across all datasets (Figure 1). Firstly, we report an association with insulin resistance through impairment of PI3K signaling in iPAH patients, by expressing lower levels of the heterodimer PIK3CD and regulatory PIK3IP1 and PIKR1 subunits in PBMCs, and by expressing higher levels of its downstream targets in the lung (TBC1D4). However, more extensive metabolic dysfunction was observed. A significant glycolytic shift in the lung and PBMCs was present, as a consequence of deregulation in genes involved in aerobic glycolysis and decreased fatty acid oxidation, namely increased expression of PD1K and lower levels of expression of LDHB. The findings of decreased SLC25A1 protein in both PBMCs and lung suggest impairment of the tricarboxylic acid (TCA) cycle flux in PAH. Additionally, SLC1A5 highlights the involvement of glutamine metabolism and glutaminolysis derangements in PAH. Conversely, SREBP1 is involved in sterol biosynthesis and lower levels in PMBCs results in impaired resolution of inflammatory responses. Finally, although the role of autophagy in iPAH is complex, higher levels of expression of ATG13 in PBMCs and lower levels in the lung confirm autophagy deregulation in iPAH. Interestingly, all the metabolic pathways identified (Figure 2) are hallmarks of the metabolic reprogramming seen in cancer cells, a finding already suggested by the clonal proliferation of pulmonary artery smooth muscle cells described in plexiform lesions. Conclusion Our results provide novel insights into the metabolic regulation in iPAH. Molecularly, these cells exhibit many features common to cancer cells, suggesting the opportunity to exploit therapeutic strategies used in cancer to treat iPAH. FUNDunding Acknowledgement Type of funding sources: None.


2020 ◽  
Vol 126 (12) ◽  
pp. 1723-1745 ◽  
Author(s):  
Lian Tian ◽  
Danchen Wu ◽  
Asish Dasgupta ◽  
Kuang-Hueih Chen ◽  
Jeffrey Mewburn ◽  
...  

Rationale: Right ventricular (RV) fibrosis in pulmonary arterial hypertension contributes to RV failure. While RV fibrosis reflects changes in the function of resident RV fibroblasts (RVfib), these cells are understudied. Objective: Examine the role of mitochondrial metabolism of RVfib in RV fibrosis in human and experimental pulmonary arterial hypertension. Methods and Results: Male Sprague-Dawley rats received monocrotaline (MCT; 60 mg/kg) or saline. Drinking water containing no supplement or the PDK (pyruvate dehydrogenase kinase) inhibitor dichloroacetate was started 7 days post-MCT. At week 4, treadmill testing, echocardiography, and right heart catheterization were performed. The effects of PDK activation on mitochondrial dynamics and metabolism, RVfib proliferation, and collagen production were studied in RVfib in cell culture. Epigenetic mechanisms for persistence of the profibrotic RVfib phenotype in culture were evaluated. PDK expression was also studied in the RVfib of patients with decompensated RV failure (n=11) versus control (n=7). MCT rats developed pulmonary arterial hypertension, RV fibrosis, and RV failure. MCT-RVfib (but not left ventricular fibroblasts) displayed excess mitochondrial fission and had increased expression of PDK isoforms 1 and 3 that persisted for >5 passages in culture. PDK-mediated decreases in pyruvate dehydrogenase activity and oxygen consumption rate were reversed by dichloroacetate (in RVfib and in vivo) or siRNA targeting PDK 1 and 3 (in RVfib). These interventions restored mitochondrial superoxide and hydrogen peroxide production and inactivated HIF (hypoxia-inducible factor)-1α, which was pathologically activated in normoxic MCT-RVfib. Redox-mediated HIF-1α inactivation also decreased the expression of TGF-β1 (transforming growth factor-beta-1) and CTGF (connective tissue growth factor), reduced fibroblast proliferation, and decreased collagen production. HIF-1α activation in MCT-RVfib reflected increased DNMT (DNA methyltransferase) 1 expression, which was associated with a decrease in its regulatory microRNA, miR-148b-3p. In MCT rats, dichloroacetate, at therapeutic levels in the RV, reduced phospho-pyruvate dehydrogenase expression, RV fibrosis, and hypertrophy and improved RV function. In patients with pulmonary arterial hypertension and RV failure, RVfib had increased PDK1 expression. Conclusions: MCT-RVfib manifest a DNMT1-HIF-1α-PDK–mediated, chamber-specific, metabolic memory that promotes collagen production and RV fibrosis. This epigenetic mitochondrial-metabolic pathway is a potential antifibrotic therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document