scholarly journals Which Fault Threatens Me Most? Bridging the Gap Between Geologic Data-Providers and Seismic Risk Practitioners

2021 ◽  
Vol 8 ◽  
Author(s):  
Oona Scotti ◽  
Francesco Visini ◽  
Joanna Faure Walker ◽  
Laura Peruzza ◽  
Bruno Pace ◽  
...  

The aim of the Fault2SHA European Seismological Commission Working Group Central Apennines laboratory is to enhance the use of geological data in fault-based seismic hazard and risk assessment and to promote synergies between data providers (earthquake geologists), end-users and decision-makers. Here we use the Fault2SHA Central Apennines Database where geologic data are provided in the form of characterized fault traces, grouped into faults and main faults, with individual slip rate estimates. The proposed methodology first derives slip rate profiles for each main fault. Main faults are then divided into distinct sections of length comparable to the seismogenic depth to allow consideration of variable slip rates and the exploration of multi-fault ruptures in the computations. The methodology further allows exploration of epistemic uncertainties documented in the database (e.g., main fault definition, slip rates) as well as additional parameters required to characterize the seismogenic potential of fault sources (e.g., 3D fault geometries). To illustrate the power of the methodology, in this paper we consider only one branch of the uncertainties affecting each step of the computation procedure. The resulting hazard and typological risk maps allow both data providers and end-users 1) to visualize the faults that threaten specific localities the most, 2) to appreciate the density of observations used for the computation of slip rate profiles, and 3) interrogate the degree of confidence on the fault parameters documented in the database (activity and location certainty). Finally, closing the loop, the methodology highlights priorities for future geological investigations in terms of where improvements in the density of data within the database would lead to the greatest decreases in epistemic uncertainties in the hazard and risk calculations. Key to this new generation of fault-based seismic hazard and risk methodology are the user-friendly open source codes provided with this publication, documenting, step-by-step, the link between the geological database and the relative contribution of each section to seismic hazard and risk at specific localities.

Author(s):  
Rumeng Guo ◽  
Hongfeng Yang ◽  
Yu Li ◽  
Yong Zheng ◽  
Lupeng Zhang

Abstract The 21 May 2021 Maduo earthquake occurred on the Kunlun Mountain Pass–Jiangcuo fault (KMPJF), a seismogenic fault with no documented large earthquakes. To probe its kinematics, we first estimate the slip rates of the KMPJF and Tuosuo Lake segment (TLS, ∼75 km north of the KMPJF) of the East Kunlun fault (EKLF) based on the secular Global Positioning System (GPS) data using the Markov chain Monte Carlo method. Our model reveals that the slip rates of the KMPJF and TLS are 1.7 ± 0.8 and 7.1 ± 0.3 mm/yr, respectively. Then, we invert high-resolution GPS and Interferometric Synthetic Aperture Radar observations to decipher the fault geometry and detailed coseismic slip distribution associated with the Maduo earthquake. The geometry of the KMPFJ significantly varies along strike, composed of five fault subsegments. The most slip is accommodated by two steeply dipping fault segments, with the patch of large sinistral slip concentrated in the shallow depth on a simple straight structure. The released seismic moment is ∼1.5×1020  N·m, equivalent to an Mw 7.39 event, with a peak slip of ∼9.3 m. Combining the average coseismic slip and slip rate of the main fault, an earthquake recurrence period of ∼1250−400+1120  yr is estimated. The Maduo earthquake reminds us to reevaluate the potential of seismic gaps where slip rates are low. Based on our calculated Coulomb failure stress, the Maduo earthquake imposes positive stress on the Maqin–Maqu segment of the EKLF, a long-recognized seismic gap, implying that it may accelerate the occurrence of the next major event in this region.


2020 ◽  
Author(s):  
Jack N. Williams ◽  
Hassan Mdala ◽  
Åke Fagereng ◽  
Luke N. J. Wedmore ◽  
Juliet Biggs ◽  
...  

Abstract. Seismic hazard is frequently characterised using instrumental seismic records. However, in regions where the instrumental record is short relative to earthquake repeat times, extrapolating it to estimate seismic hazard can misrepresent the probable location, magnitude, and frequency of future large earthquakes. Although paleoseismology can address this challenge, this approach requires certain geomorphic settings and carries large inherent uncertainties. Here, we outline how fault slip rates and recurrence intervals can be estimated through an approach that combines fault geometry, earthquake-scaling relationships, geodetically derived regional strain rates, and geological constraints of regional strain distribution. We then apply this approach to the southern Malawi Rift where, although no on-fault slip rate measurements exist, there are theoretical and observational constraints on how strain is distributed between border and intrabasinal faults. This has led to the development of the South Malawi Active Fault Database (SMAFD), the first database of its kind in the East African Rift System (EARS) and designed so that the outputs can be easily incorporated into Probabilistic Seismic Hazard Analysis. We estimate earthquake magnitudes of MW 5.4–7.2 for individual fault sections in the SMAFD, and MW 6.0–7.8 for whole fault ruptures. These potentially high magnitudes for continental normal faults reflect southern Malawi's 11–140 km long faults and thick (30–35 km) seismogenic crust. However, low slip rates (intermediate estimates 0.05–0.8 mm/yr) imply long recurrence intervals between events: 102–105 years for border faults and 103–106 years for intrabasinal faults. Sensitivity analysis indicates that the large range of these estimates can be reduced most significantly from an improved understanding of the rate and partitioning of rift-extension in southern Malawi, earthquake scaling relationships, and earthquake rupture scenarios. Hence these are critical areas for future research. The SMAFD provides a framework for using geological and geodetic information to characterize seismic hazard in low strain rate settings with few on-fault slip rate measurements, and could be adapted for use elsewhere in the EARS or globally.


1984 ◽  
Vol 74 (6) ◽  
pp. 2593-2611
Author(s):  
T. Anagnos ◽  
A. S. Kiremidjian

Abstract Recent geophysical studies have indicated that an earthquake recurrence interval and the size of the preceding event are positively correlated. This observation is the basis for the deterministic time-predictable recurrence model of Shimazaki and Nakata. Using the basic assumptions of the time-predictable recurrence model, we develop a stochastic model of earthquake occurrence that incorporates temporal dependence. This paper discusses the formulation of the model and the effect of including temporal dependence. Hazard estimates for a section of the San Andreas fault near Parkfield, where data has suggested time-predictable behavior, are obtained for illustrative purposes. Comparisons are made with the Poisson model. Results indicate that currently used Poisson models may give lower estimates of the seismic hazard when there has been a seismic gap. Of the various sensitivity analyses performed, it is observed that slip rate has the largest effect on exceedence probabilites computed from the stochastic time-predictable model. Therefore, accurate determinations of slip rates (both seismic and aseismic) can substantially reduce the uncertainty in seismic hazard estimates.


2021 ◽  
Author(s):  
Jack N. Williams ◽  
Luke N. J. Wedmore ◽  
Åke Fagereng ◽  
Maximilian J. Werner ◽  
Hassan Mdala ◽  
...  

Abstract. Active fault data are commonly used in seismic hazard assessments, but there are challenges in deriving the slip rate, geometry, and frequency of earthquakes along active faults. Herein, we present the open-access geospatial Malawi Seismogenic Source Database (MSSD), which describes the seismogenic properties of faults that have formed during East African rifting in Malawi. We first use empirical observations to geometrically classify active faults into section, fault, and multi-fault seismogenic sources. For sources in the North Basin of Lake Malawi, slip rates can be derived from the vertical offset of a seismic reflector that is estimated to be 75 ka based on dated core. Elsewhere, slip rates are constrained from advancing a ‘systems-based’ approach that partitions geodetically-derived rift extension rates in Malawi between seismogenic sources using a priori constraints on regional strain distribution in magma-poor continental rifts. Slip rates are then combined with source geometry and empirical scaling relationships to estimate earthquake magnitudes and recurrence intervals, and their uncertainty is described from the variability of outcomes from a logic tree used in these calculations. We find that for sources in the Lake Malawi’s North Basin, where slip rates can be derived from both the geodetic data and the offset seismic reflector, the slip rate estimates are within error of each other, although those from the offset reflector are higher. Sources in the MSSD are 5–200 km long, which implies that large magnitude (MW 7–8) earthquakes may occur in Malawi. Low slip rates (0.05–2 mm/yr), however, mean that the frequency of such events will be low (recurrence intervals ~103–104 years). The MSSD represents an important resource for investigating Malawi’s increasing seismic risks and provides a framework for incorporating active fault data into seismic hazard assessment in other tectonically active regions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joanna Faure Walker ◽  
Paolo Boncio ◽  
Bruno Pace ◽  
Gerald Roberts ◽  
Lucilla Benedetti ◽  
...  

AbstractWe present a database of field data for active faults in the central Apennines, Italy, including trace, fault and main fault locations with activity and location certainties, and slip-rate, slip-vector and surface geometry data. As advances occur in our capability to create more detailed fault-based hazard models, depending on the availability of primary data and observations, it is desirable that such data can be organized in a way that is easily understood and incorporated into present and future models. The database structure presented herein aims to assist this process. We recommend stating what observations have led to different location and activity certainty and presenting slip-rate data with point location coordinates of where the data were collected with the time periods over which they were calculated. Such data reporting allows more complete uncertainty analyses in hazard and risk modelling. The data and maps are available as kmz, kml, and geopackage files with the data presented in spreadsheet files and the map coordinates as txt files. The files are available at: 10.1594/PANGAEA.922582.


Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 187-217
Author(s):  
Jack N. Williams ◽  
Hassan Mdala ◽  
Åke Fagereng ◽  
Luke N. J. Wedmore ◽  
Juliet Biggs ◽  
...  

Abstract. Seismic hazard is commonly characterised using instrumental seismic records. However, these records are short relative to earthquake repeat times, and extrapolating to estimate seismic hazard can misrepresent the probable location, magnitude, and frequency of future large earthquakes. Although paleoseismology can address this challenge, this approach requires certain geomorphic setting, is resource intensive, and can carry large inherent uncertainties. Here, we outline how fault slip rates and recurrence intervals can be estimated by combining fault geometry, earthquake-scaling relationships, geodetically derived regional strain rates, and geological constraints of regional strain distribution. We apply this approach to southern Malawi, near the southern end of the East African Rift, and where, although no on-fault slip rate measurements exist, there are constraints on strain partitioning between border and intra-basin faults. This has led to the development of the South Malawi Active Fault Database (SMAFD), a geographical database of 23 active fault traces, and the South Malawi Seismogenic Source Database (SMSSD), in which we apply our systems-based approach to estimate earthquake magnitudes and recurrence intervals for the faults compiled in the SMAFD. We estimate earthquake magnitudes of MW 5.4–7.2 for individual fault sections in the SMSSD and MW 5.6–7.8 for whole-fault ruptures. However, low fault slip rates (intermediate estimates ∼ 0.05–0.8 mm/yr) imply long recurrence intervals between events: 102–105 years for border faults and 103–106 years for intra-basin faults. Sensitivity analysis indicates that the large range of these estimates can best be reduced with improved geodetic constraints in southern Malawi. The SMAFD and SMSSD provide a framework for using geological and geodetic information to characterise seismic hazard in regions with few on-fault slip rate measurements, and they could be adapted for use elsewhere in the East African Rift and globally.


2021 ◽  
Author(s):  
Joanna Faure Walker ◽  
Francesco Iezzi ◽  
Gerald Roberts

<p>Changes in fault geometry, throw-rates and slip-rates along the length of a fault are crucial for understanding fault evolution and interaction and need to be incorporated in interpretation of fault scaling relationships and earthquake hazard assessments. Normal fault examples from Iceland and Italy provide examples of soft linkage, breach faults, and bends in faults that can be used to investigate fault growth at different stages of fault linkage. We find that at all stages of fault linkage studied, bends in strike along a fault affect throw-rate profiles along the fault. Crucially, for fault-based seismic hazard assessment, we need to consider how we interpret throw-rate and slip-rate profiles along a fault because how we interpret slip-rate profiles will impact moment release calculations and hence recurrence intervals. We therefore need detailed data regarding fault geometry and slip-rates to inform fault-based seismic hazard assessments, uncertainties and where further study is needed.</p>


2016 ◽  
Vol 16 (2) ◽  
pp. 529-542 ◽  
Author(s):  
Solmaz Mohadjer ◽  
Todd Alan Ehlers ◽  
Rebecca Bendick ◽  
Konstanze Stübner ◽  
Timo Strube

Abstract. Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.


2011 ◽  
Vol 27 (1_suppl1) ◽  
pp. 23-41 ◽  
Author(s):  
Arthur Frankel ◽  
Stephen Harmsen ◽  
Charles Mueller ◽  
Eric Calais ◽  
Jennifer Haase

We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.


2015 ◽  
Vol 3 (9) ◽  
pp. 5599-5632
Author(s):  
S. Mohadjer ◽  
T. A. Ehlers ◽  
R. Bendick ◽  
K. Stübner ◽  
T. Strube

Abstract. Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.


Sign in / Sign up

Export Citation Format

Share Document