scholarly journals Hydrochemical and Isotopic Difference of Spring Water Depending on Flow Type in a Stratigraphically Complex Karst Area of South Korea

2021 ◽  
Vol 9 ◽  
Author(s):  
Soonyoung Yu ◽  
Gitak Chae ◽  
Junseop Oh ◽  
Se-Hoon Kim ◽  
Dong-Il Kim ◽  
...  

Characterizing the subsurface flow in karstic areas is challenging due to distinct flow paths coexisting, and lithologic heterogeneity makes it more difficult. A combined use of hydrochemical, environmental isotopic, and hydrograph separation study was performed to understand the subsurface flow in a karst terrain where Ordovician carbonate rocks overlie Jurassic sandstone and shale along thrusts. Spring water collected was divided into Type Ⅰ (n = 11) and Ⅱ (n = 30) based on flow patterns (i.e., low and high discharge, respectively). In addition, groundwater (n = 20) was examined for comparison. Three Type Ⅱ springs were additionally collected during a storm event to construct hydrographs using δ18O and δD. As a result, Type Ⅱ had higher electrical conductivity, Mg2+, HCO3−, and Ca2+/(Na+ + K+) than Type Ⅰ and was mostly saturated with calcite, similar to deep groundwater. The hydrochemical difference between Types Ⅰ and Ⅱ was opposite to the expectation that Type Ⅱ would be undersaturated given fast flow and small storage, which could be explained by the distinct geology and water sources. Most Type Ⅱ springs and deep groundwater occurred in carbonate rocks, whereas Type Ⅰ and shallow groundwater occurred in various geological settings. The carbonate rocks seemed to provide conduit flow paths for Type Ⅱ given high solubility and faults, resulting in 1) relatively high tritium and NO3− and Cl−via short-circuiting flow paths and 2) the similar hydrochemistry and δ18O and δD to deep groundwater via upwelling from deep flow paths. The deep groundwater contributed to 83–87% of the discharge at three Type Ⅱ springs in the dry season. In contrast, Type Ⅰ showed low Ca2+ + Mg2+ and Ca2+/(Na+ + K+) discharging diffuse sources passing through shallow depths in a matrix in mountain areas. Delayed responses to rainfall and the increased concentrations of contaminants (e.g., NO3−) during a typhoon at Type Ⅱ implied storage in the vadose zone. This study shows that hydrochemical and isotopic investigations are effective to characterize flow paths, when combined with hydrograph separation because the heterogenous geology affects both flow paths and the hydrochemistry of spring water passing through each pathway.

2017 ◽  
Vol 21 (7) ◽  
pp. 3727-3748 ◽  
Author(s):  
Lisa Angermann ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Erwin Zehe ◽  
...  

Abstract. The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al.(2017).


2014 ◽  
Vol 18 (2) ◽  
pp. 525-537 ◽  
Author(s):  
C. Hugenschmidt ◽  
J. Ingwersen ◽  
W. Sangchan ◽  
Y. Sukvanachaikul ◽  
A. Duffner ◽  
...  

Abstract. Land-use change in the mountainous parts of northern Thailand is reflected by an increased application of agrochemicals, which may be lost to surface and groundwater. The close relation between flow paths and contaminant transport within hydrological systems requires recognizing and understanding the dominant hydrological processes. To date, the vast majority of studies on runoff generation have been conducted in temperate regions. Tropical regions suffer from a general lack of data, and little is known about runoff generation processes. To fill this knowledge gap, a three-component hydrograph separation based on geochemical tracers was carried out in a steep, remote and monsoon-dominated study site (7 km2) in northern Thailand. Silica and electrical conductivity (EC) were identified as useful tracers and were applied to calculate the fractions of groundwater (similar to pre-event water), shallow subsurface flow and surface runoff on stormflow. K+ was a useful indicator for surface runoff dynamics, and Ca2+ provided insights into groundwater behaviour. Nevertheless, neither measure was applicable for the quantification of runoff components. Cl- and further parameters (e.g. Na+, K+, and Mg2+) were also not helpful for flow path identification, nor were their concentrations distinguishable among the components. Groundwater contributed the largest fractions to stormflow (62–80%) throughout all events, followed by shallow subsurface flow (17–36%) and surface runoff (2–13%). Our results provide important insights into the dynamics of the runoff processes in the study area and may be used to assess the transport pattern of contaminants (i.e. agrochemicals) here.


Author(s):  
Mario Pirastru ◽  
Massimo Iovino ◽  
Hassan Awada ◽  
Roberto Marrosu ◽  
Simone Di Prima ◽  
...  

Lateral saturated soil hydraulic conductivity, Ks,l, is the soil property governing subsurface water transfer in hillslopes, and the key parameter in many numerical models simulating hydrological processes both at the hillslope and catchment scales. Likewise, the hydrological connectivity of lateral flow paths plays a significant role in determining the intensity of the subsurface flow at various spatial scales. The objective of the study is to investigate the relationship between Ks,l and hydraulic connectivity at the hillslope spatial scale. Ks,l was determined by the subsurface flow rates intercepted by drains, and by water table depths observed in a well network. Hydraulic connectivity of the lateral flow paths was evaluated by the synchronicity among piezometric peaks, and between the latter and the peaks of drained flow. Soil moisture and precipitation data were used to investigate the influence of the transient hydrological soil condition on connectivity and Ks,l. It was found that the higher was the synchronicity of the water table response between wells, the lower was the time lag between the peaks of water levels and those of the drained subsurface flow. Moreover, the most synchronic water table rises determined the highest drainage rates. The relationships between Ks,l and water table depths were highly non-linear, with a sharp increase of the values for water table levels close to the soil surface. Estimated Ks,l values for the full saturated soil were in the order of thousands of mm h-1, suggesting the activation of macropores in the root zone. The Ks,l values determined at the peak of the drainage events were correlated with the indicators of synchronicity. The sum of the antecedent soil moisture and of the precipitation was correlated with the indicators of connectivity and with Ks,l. We suggest that, for simulating realistic processes at the hillslope scale, the hydraulic connectivity could be implicitly considered in hydrological modelling through an evaluation of Ks,l at the same spatial scale.


2014 ◽  
Vol 2 (12) ◽  
pp. 7293-7308
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3− and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl− and SO42− of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42− of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.


2018 ◽  
Vol 44 (2) ◽  
pp. 453 ◽  
Author(s):  
L. Holko ◽  
S. Bičárová ◽  
J. Hlavčo ◽  
M. Danko ◽  
Z. Kostka

Two-component isotopic hydrograph separation (IHS) was developed to determine the event- and pre-event components of a single storm event. Its application for several sucessive events requires repeated determination of isotopic signatures of end-members (precipitation, pre-event component) for each event. The existence of several possible alternative signatures results in differences in calculated contributions of event-/pre- event components. This article addresses the question of how big the differences could be in small mountain catchments with different methods for detemining the end member signatures. We analyzed data on isotopic composition of daily/event precipitation at different elevations in two catchments located in the highest part of the Carpathians in July 2014.The isotopic composition of streamflow sampled every 4-6 hours was analyzed as well. Elevational gradients of δ18O and δ2H in precipitation in the study period were -0.18 ‰ 100 m-1 and -1.1 ‰ 100 m-1, respectively. An elevation gradient in deuterium excess (0.29 ‰ 100 m-1) was also found. Precipitation on the windward side of the mountains was isotopically lighter than expected for a given rain gauge elevation. Five large rainfall-runoff events occurred in the study period in the meso-scale catchment of the Jalovecký creek (Western Tatra Mountains, area 22.2 km2) and in the headwater catchment of the Škaredý creek (High Tatra Mountains, area 1.4 km2). Isotopic hydrograph separation was conducted using eight options for the isotopic signatures of event and pre-event water. The isotopic signature of the event water (rainfall) was alternatively represented by data from high or low elevations. Pre-event water was represented either by the streamflow before the event or by the value taken from the statistics of the long-term data on isotopic composition of the stream. Both isotopes (18O and 2H) were used to calculate event water fractions during peak flows of individual events. Calculated peak flow event water fractions were below 0.2-0.3 for most events. However, the differences in calculated event water fractions for alternative isotopic composition of end-members were significant even if we did not take into account changes in isotopic composition during individual rainfalls. Coefficients of variation for event water fractions calculated for various options varied during individual events from 0.14 to 0.36. It is therefore perhaps better to use a range of possible values instead of a single accurate number to interpret the IHS results. Hydrograph separations based on 18O and 2H provided similar results.


2005 ◽  
Vol 2 ◽  
pp. 237-241 ◽  
Author(s):  
S. Uhlenbrook ◽  
J. Wenninger ◽  
S. Lorentz

Abstract. The knowledge of water flow pathways and residence times in a catchment are essential for predicting the hydrological response to a rain storm event. Different experimental techniques are available to study these processes, which are briefly reviewed in this paper. To illustrate this, recent findings from the Weatherley catchment a 1.5 km2 semi-arid headwater in South-Africa, are reported in this paper. Beside classical hydrometric measurements of precipitation and runoff different experimental techniques were applied to explore flow paths (i.e. soil moisture and groundwater measurements, natural tracers, and 2-D electrical resistivity tomographies (ERT)).


2017 ◽  
Vol 21 (6) ◽  
pp. 3025-3040 ◽  
Author(s):  
Lukáš Vlček ◽  
Kristýna Falátková ◽  
Philipp Schneider

Abstract. Subsurface flow in peat bog areas and its role in the hydrologic cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in peat bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic peat soils and a shallow phreatic zone (0.5 m below surface), and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation and preferential flow paths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Fluorescein sodium. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flow paths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes; however, at the peat bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow in the case of the peat bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipe flow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the peat bog hillslope and in the adjacent riparian zone.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1081 ◽  
Author(s):  
Russell Adams ◽  
Paul Quinn ◽  
Nick Barber ◽  
Sean Burke

Identifying key flow pathways is critical in order to understand the transport of Phosphorus (P) from agricultural headwater catchments. High frequency/resolution datasets from two such catchments in Northwest England enabled individual events to be examined to identify the flow (Q) and Total P (TP) and Total Reactive P (TRP) dynamics (forensics). Detailed analysis of multiple flow and water quality parameters is referred to here as the event forensics. Are there more flow pathways than just surface runoff (dominated by overland flow) and baseflow (mainly groundwater) contributing at the outlet of these catchments? If so, hydrograph separation alone will not be sufficient. This forensic analysis gives a classification of four storm event response types. Three classes are based on the balance of old and new water giving enrichment and dilution of TRP pattern in the subsurface flow. A fourth type was observed where a plume of nutrient is lost to the channel when there is no observed flow. Modelling is also essential when used in combination with the event forensics as this additional tool can identify distinct flow pathways in a robust form. A case study will apply the Catchment Runoff Attenuation Flux Tool (CRAFT) to two contrasting small headwater catchments in Northwest England, which formed part of the Demonstration Test Catchments (DTC) Programme. The model will use data collected during a series of events observed in the two catchments between the period 2012 and 2014. It has the ability to simulate fast near surface (that can represent flow in the upper soil horizons and field drains) and event subsurface soil flow, plus slower groundwater discharge. The model can capture P enrichment, dilution and the role that displacement of “old” P rich water has during events by mixing these flows. CRAFT captures the dominant flow and P fluxes as seen in the forensic analysis and can create outputs including smart export coefficients (based on flow pathways) that can be conveyed to policy makers to better underpin decision making.


Sign in / Sign up

Export Citation Format

Share Document