scholarly journals An Enhanced Ubiquitous-Joint Model for a Rock Mass With Conjugate Joints and Its Application on Excavation Simulation of Large Underground Caverns

2021 ◽  
Vol 9 ◽  
Author(s):  
Xianlun Leng ◽  
Chuan Wang ◽  
Qian Sheng ◽  
Jian Chen ◽  
Hailun Li

A conjugate jointed rock mass (CJRM) is a rock mass with two sets of intersecting joints formed from intact rock under shear. Its mechanical properties and excavation-induced hazards of large underground caverns are different from those of common rock masses because of the unique geological origin thereof. To demonstrate numerically the excavation responses of CJRM, the ubiquitous-joint model is enhanced by consideration of the specific mechanical behaviors of the rock mass. In the enhanced model, CJRM is considered as the composite of columns of rock and two sets of weak planes of joints. The local coordinates, failure modes, and failure sequences of the rock columns and joints are redefined based on the composite characteristics of CJRM, and the failure criteria and plastic potential functions are accordingly modified. The enhanced model is verified numerically by triaxial compression tests and then employed to simulate the excavation of large underground caverns of a pumped storage power station in China. Results show that the modification of the local coordinate system, failure modes, and failure sequences made in the enhanced model is suited to the simulation of the mechanical behaviors of CJRM. Compared with the original ubiquitous-joint model, the enhanced model allows better predictions of the distribution of plastic zones and magnitudes of deformations in simulating underground excavations in CJRM and helps to assess the excavation-triggered hazards more accurately.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Feng Zhu ◽  
Haotian Fan

Flaws existing in rock mass are one of the main factors resulting in the instability of rock mass. Epoxy resin is often used to reinforce fractured rock mass. However, few researches focused on mechanical properties of the specimens with a resin-infilled flaw under triaxial compression. Therefore, in this research, epoxy resin was selected as the grouting material, and triaxial compression tests were conducted on the rock-like specimens with a grout-infilled flaw having different geometries. This study draws some new conclusions. The high confining pressure suppresses the generation of tensile cracks, and the failure mode changes from tensile-shear failure to shear failure as the confining pressure increases. Grouting with epoxy resin leads to the improvement of peak strengths of the specimens under triaxial compression. The reinforcement effect of epoxy resin is better for the specimens having a large flaw length and those under a relatively low confining pressure. Grouting with epoxy resin reduces the internal friction angle of the samples but improves their cohesion. This research may provide some useful insights for understanding the mechanical behaviors of grouted rock masses.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1528
Author(s):  
Zhende Zhu ◽  
Xiangcheng Que ◽  
Zihao Niu ◽  
Wenbin Lu

Because of its special structure, the anisotropic properties of columnar jointed rock mass (CJRM) are complicated, which brings difficulty to engineering construction. To comprehensively study the anisotropic characteristics of CJRM, uniaxial compression tests were conducted on artificial CJRM specimens. Quadrangular, pentagonal and hexagonal prism CJRM models were introduced, and the dip direction of the columnar joints was considered. Based on the test results and the structural features of the three CJRM models, the deformation and strength characteristics of CJRM specimens were analyzed and compared. The failure modes and mechanisms of artificial specimens with different dip directions were summarized in accordance with the failure processes and final appearances. Subsequently, the anisotropic degrees of the three CJRM models in the horizontal plane were classified, and their anisotropic characteristics were described. Finally, a simple empirical expression was adopted to estimate the strength and deformation of the CJRM, and the derived equations were used in the Baihetan Hydropower Station project. The calculated values are in good agreement with the existing research results, which reflects the engineering application value of the derived empirical equations.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Xinyu Liu ◽  
Zhende Zhu ◽  
Aihua Liu

Filling is commonly found in natural cracked rock mass. As the weakest part of the rock, the filling properties directly affect the rock deformation and strength, permeability, and so on and affect the safety and stability of the rock mass engineering. In this study, a single slit has been preset in sandstones and filled with different physical properties materials. Based on the laboratory triaxial seepage test, the permeability and strength characteristics of filled cracked sandstones are analyzed, and the failure modes are obtained. The main findings of this study are as follows: (1) The permeability coefficient peak value of the filled cracked rock appears before the stress peak. (2) At the same confining pressure growth rate, the peak stress growth rate of the filled cracked rock is generally higher than that of the intact rock and the strength growth rate of the cracked rock increases with the length of the fracture. The strength characteristics of the filling in the uniaxial compression tests and triaxial seepage tests are significantly affected by the hydraulic properties. (3) The strength and permeability coefficients of cracked rock filled with cement mortar are more sensitive to the change of confining pressure, while under the same condition, the ones of cracked rock filled with gypsum mortar are stable. (4) According to the failure mechanism, under the seepage stress, the secondary cracks can be divided into 3 types and the failure modes can be divided into 2 types.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Zhiqiang Li ◽  
Guofeng Liu ◽  
Shuqian Duan ◽  
Shufeng Pei ◽  
Changgen Yan

Geological strength index GSI, disturbance factor (D), material constant mi, and uniaxial compressive strength σci of the intact rock are essential input parameters IPs of the Hoek–Brown H−B criterion. Mechanical parameters MPs of the engineering rock mass, including elastic modulus E, cohesion c, and internal friction angle φ estimated by the H–B criterion, and the predicted excavation response of surrounding rock, including the displacement and excavation damage zone EDZ based on the MPs, are of high relevance with the four IPs of the H–B criterion. In this paper, the deep and huge underground cavern excavated in basalt from a hydropower station under construction in the southwest of China is used to analyse the sensitivity of the IPs on the MPs, the displacement, and EDZ of the surrounding rock mass. Firstly, the H–B criterion is applied to estimate the MPs, among which the IPs are obtained from a series of in situ and laboratory tests, including borehole camera observation, wave velocity test, uniaxial and triaxial compression tests, and so on. Secondly, the sensitivity relationships between IPs, MPs, and prediction results of displacement and EDZ are established and described quantitatively by the sensitivity factor (si). Results show that the MPs of the rock mass are more sensitive to GSI and D⋅GSI and σci are high-sensitivity parameters affecting the displacement and EDZ. Finally, the variations in the estimated MPs and associated prediction results concerning excavation response, which are caused by the uncertainties in the determination of the IPs, are further quantified. This study provides a straightforward assessment for the variability of the rock mass parameters estimated by the H–B criterion. It also gives a valuable reference to similar geotechnical engineering for the determination of rock mass parameters in the preliminary design.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Zenon Szypcio

The strength of sand is usually characterized by the maximum value of the secant friction angle. The friction angle is a function of deformation mode, density, and stress level and is strongly correlated with dilatancy at failure. Most often, the friction angle is evaluated from results of conventional compression tests, and correlation between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions is a vital problem of soil mechanics. These correlations can be obtained from laboratory test results. The failure criteria for sand presented in literature also give the possibility of finding correlations between friction angles for different deformation modes. The general stress-dilatancy relationship obtained from the frictional state concept, with some additional assumptions, gives the possibility of finding theoretical relationships between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions. The theoretically obtained relationships presented in the paper are fully consistent with theoretical and experimental findings of soil mechanics.


2015 ◽  
Vol 52 (8) ◽  
pp. 1136-1143 ◽  
Author(s):  
Hongyan Liu ◽  
Xiaoping Yuan

Microcracks and joints, two types of flaws that appear in a rock mass, affect both the rock mass strength and deformability. A model that can simultaneously reflect the effect of these two types of flaws on the mechanical behavior of a rock mass with persistent joints is not yet available. This study focusses on a microcracked rock mass with persistent joints and establishes a mechanical model, accounting for the anisotropy in the rock mass strength and deformability induced by the existence of the joints. Firstly, the compound damage variable from the coupling macroscopic and mesoscopic flaws is deduced based on the Lemaitre strain equivalence hypothesis. Secondly, the corresponding damage constitutive model for a jointed rock mass is set up. Thirdly, the joint shear failure criterion is incorporated into the constitutive model to extend the model. Finally, the results of the calculation examples show that the existence of the joint will reduce the strength, enlarge the deformability, and lead to anisotropy of the rock mass. A series of calculation examples and comparisons validate that the proposed model is capable of presenting the joint-induced anisotropy in rock mass strength and deformability, determining its possible failure modes, and reasonably simulating its complete stress–strain relationship.


Sign in / Sign up

Export Citation Format

Share Document