scholarly journals Observed Quantile Features of Summertime Temperature Trends over China: Non-Negligible Role of Temperature Variability

2021 ◽  
Vol 9 ◽  
Author(s):  
Xing Li ◽  
Xiao Li ◽  
Hedi Ma ◽  
Wenjian Hua ◽  
Shanlei Sun ◽  
...  

Changes in temperature variability can have more serious social and ecological impacts than changes in the mean state of temperature, especially when they are concurrent with global warming. The present study examines the summertime temperatures’ trends over China from the quantile perspective. Through fully investigating the quantile trends (QTs) of the maximum (Tmax) and minimum temperature (Tmin) using the homogenized observation data and quantile regression analysis, we identify evident region-specific quantile features of summertime temperature trends. In most of northern China, the QTs in Tmax and Tmin for all percentiles generally show strong uniform warmings, which are dominated by a warm shift in mean state temperatures. In contrast, the QTs of Tmax in the Yangtze River Basin show distinguishable inter-quantile features, i.e., an increasing tendency of QTs from cooling trends in the lower percentile to warming trends in the higher percentile. Further investigations show that such robust growing QTs of Tmax across quantiles are dominated by the temperature variance. Our results highlight that more attention should be paid to the region-specific dominance of temperature variability in trends and the related causes.

2006 ◽  
Vol 19 (7) ◽  
pp. 1204-1213 ◽  
Author(s):  
Nobuhiko Endo ◽  
Tetsuzo Yasunari

Abstract The climatology and long-term trends of low-cloud conditions over China were examined using the Extended Edited Cloud Report Archive data from 1971 to 1996. Linear regression analysis was applied to time series of clear-sky frequencies and low-cloud frequencies, and low-cloud amounts when present. Over the 26-yr study period, the clear-sky frequency increased over northern China. During summer, the frequency of cumuliform clouds decreased over almost all of China. A significant decrease characterized the trend in cumulonimbus (Cb) frequency; however, the Cb cloud amount when present increased over the Yangtze River basin and southern China. Increasing trends in stratocumulus (Sc) cloud amount when present were also observed over much of China.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3531
Author(s):  
Yang You ◽  
Simin Qu ◽  
Yifan Wang ◽  
Qingyi Yang ◽  
Peng Shi ◽  
...  

Typhoon storm and plum rain are two typical rainfall types in the lower regions of the Yangtze River Basin, which frequently cause flood disasters in China. New information in stable water isotopes offers the opportunity to advance understanding of runoff mechanisms and water source dynamics in response to these two typical rainfall types. We intensively monitored two representative rainfall events in a small bamboo forestry watershed in 2016. Results showed that precipitation isotopic variations during the event were generally larger than those of other monitored compartments (including throughfall, surface overland water, groundwater and river water) and also larger for the plum rain than for the typhoon event (δ18O varied in 5.2‰ and 3.7‰, respectively). Importantly, the differences of isotopic temporal variation between rainfall and throughfall showed significant impacts on the two-component hydrograph separation for both rainfall types (e.g., if not considered, the pre-event water fractions were 26.6% and 15.3% higher for the typhoon and plum rain events, respectively). Furthermore, we evaluated the role of soil water on the three-component isotopic hydrograph separation model; results revealed that soil water accounted for 10.9% and 28.3% of the total discharge in typhoon and plum rain events, respectively. This underpins the important role of soil water dynamics during the rainy season in this humid region.


2020 ◽  
Vol 95 ◽  
pp. 84-96
Author(s):  
Gang Xu ◽  
Jian Liu ◽  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Lilei Chen ◽  
...  

AbstractThis paper presents geochemical and grain-size records since the early Holocene in core ECS0702 with a fine chronology frame obtained from the Yangtze River subaqueous delta front. Since ~9500 cal yr BP, the proxy records of chemical weathering from the Yangtze River basin generally exhibit a Holocene optimum in the early Holocene, a weak East Asian summer monsoon (EASM) period during the middle Holocene, and a relatively strong EASM period in the late Holocene. The ~8.2 and ~4.4 cal ka BP cooling events are recorded in core ECS0702. The flooding events reconstructed by the grain-size parameters since the early Holocene suggest that the floods mainly occurred during strong EASM periods and the Yangtze River mouth sandbar caused by the floods mainly formed in the early and late Holocene. The Yangtze River-mouth sandbars since the early Holocene shifted from north to south, affected by tidal currents and the Coriolis force, and more importantly, controlled by the EASM. Our results are of great significance for enriching both the record of Holocene climate change in the Yangtze River basin and knowledge about the formation and evolution progress of the deltas located in monsoon regions.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Yantao Zhou ◽  
Guofei Fang

The Yangtze River Basin is among the river basins with the strongest strategic support and developmental power in China. As an invasive species, the pinewood nematode (PWN) Bursaphelenchus xylophilus has introduced a serious obstacle to the high-quality development of the economic and ecological synchronization of the Yangtze River Basin. This study analyses the occurrence and spread of pine wilt disease (PWD) with the aim of effectively managing and controlling the spread of PWD in the Yangtze River Basin. In this study, statistical data of PWD-affected areas in the Yangtze River Basin are used to analyse the occurrence and spread of PWD in the study area using spatiotemporal visualization analysis and spatiotemporal scanning statistics technology. From 2000 to 2018, PWD in the study area showed an “increasing-decreasing-increasing” trend, and PWD increased explosively in 2018. The spatial spread of PWD showed a “jumping propagation-multi-point outbreak-point to surface spread” pattern, moving west along the river. Important clusters were concentrated in the Jiangsu-Zhejiang area from 2000 to 2015, forming a cluster including Jiangsu and Zhejiang. Then, from 2015–2018, important clusters were concentrated in Chongqing. According to the spatiotemporal scanning results, PWD showed high aggregation in the four regions of Zhejiang, Chongqing, Hubei, and Jiangxi from 2000 to 2018. In the future, management systems for the prevention and treatment of PWD, including ecological restoration programs, will require more attention.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


Sign in / Sign up

Export Citation Format

Share Document