scholarly journals A Cloudier Picture of Ice-Albedo Feedback in CMIP6 Models

2021 ◽  
Vol 9 ◽  
Author(s):  
Anne Sledd ◽  
Tristan S. L’Ecuyer

Increased solar absorption is an important driver of Arctic Amplification, the interconnected set of processes and feedbacks by which Arctic temperatures respond more rapidly than global temperatures to climate forcing. The amount of sunlight absorbed in the Arctic is strongly modulated by seasonal ice and snow cover. Sea ice declines and shorter periods of seasonal snow cover in recent decades have increased solar absorption, amplifying local warming relative to the planet as a whole. However, this Arctic albedo feedback would be substantially larger in the absence of the ubiquitous cloud cover that exists throughout the region. Clouds have been observed to mask the effects of reduced surface albedo and slow the emergence of secular trends in net solar absorption. Applying analogous metrics to several models from the 6th Climate Model Intercomparison Project (CMIP6), we find that ambiguity in the influence of clouds on predicted Arctic solar absorption trends has increased relative to the previous generation of climate models despite better agreement with the observed albedo sensitivity to sea ice variations. Arctic albedo responses to sea ice loss are stronger in CMIP6 than in CMIP5 in all summer months. This agrees better with observations, but models still slightly underestimate albedo sensitivity to sea ice changes relative to observations. Never-the-less, nearly all CMIP6 models predict that the Arctic is now absorbing more solar radiation than at the start of the century, consistent with recent observations. In fact, many CMIP6 models simulate trends that are too strong relative to internal variability, and spread in predicted Arctic albedo changes has increased since CMIP5. This increased uncertainty can be traced to increased ambiguity in how clouds influence natural and forced variations in Arctic solar absorption. While nearly all CMIP5 models agreed with observations that clouds delay the emergence of forced trends, about half of CMIP6 models suggest that clouds accelerate their emergence from natural variability. Isolating atmospheric contributions to total Arctic reflection suggests that this diverging behavior may be linked to stronger Arctic cloud feedbacks in the latest generation of climate models.

2021 ◽  
Vol 34 (3) ◽  
pp. 931-948
Author(s):  
Anne Sledd ◽  
Tristan L’Ecuyer

AbstractThe Arctic is rapidly changing, with increasingly dramatic sea ice loss and surface warming in recent decades. Shortwave radiation plays a key role in Arctic warming during summer months, and absorbed shortwave radiation has been increasing largely because of greater sea ice loss. Clouds can influence this ice–albedo feedback by modulating the amount of shortwave radiation incident on the Arctic Ocean. In turn, clouds impact the amount of time that must elapse before forced trends in Arctic shortwave absorption emerge from internal variability. This study determines whether the forced climate response of absorbed shortwave radiation in the Arctic has emerged in the modern satellite record and global climate models. From 18 years of satellite observations from CERES-EBAF, we find that recent declines in sea ice are large enough to produce a statistically significant trend (1.7 × 106 PJ or 3.9% per decade) in observed clear-sky absorbed shortwave radiation. However, clouds preclude any forced trends in all-sky absorption from emerging within the existing satellite record. Across 18 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), the predicted time to emergence of absorbed shortwave radiation trends varies from 8 to 39 and from 8 to 35 years for all-sky and clear-sky conditions, respectively, across two future scenarios. Furthermore, most models fail to reproduce the observed cloud delaying effect because of differences in internal variability. Contrary to observations, one-third of models suggest that clouds may reduce the time to emergence of absorbed shortwave trends relative to clear skies, an artifact that may be the result of inaccurate representations of cloud feedbacks.


2018 ◽  
Vol 12 (10) ◽  
pp. 3373-3382 ◽  
Author(s):  
Aaron Letterly ◽  
Jeffrey Key ◽  
Yinghui Liu

Abstract. Recent declines in Arctic sea ice and snow extent have led to an increase in the absorption of solar energy at the surface, resulting in additional surface heating and a further decline in snow and ice. Using 34 years of satellite data, 1982–2015, we found that the positive trend in solar absorption over the Arctic Ocean is more than double that over Arctic land, and the magnitude of the ice–albedo feedback is four times that of the snow–albedo feedback in summer. The timing of the high-to-low albedo transition has shifted closer to the greater insolation of the summer solstice over ocean, but further away from the summer solstice over land. Therefore, decreasing sea ice cover, not changes in terrestrial snow cover, has been the dominant radiative feedback mechanism over the last few decades.


2018 ◽  
Author(s):  
Aaron Letterly ◽  
Jeffrey Key ◽  
Yinghui Liu

Abstract. Recent declines in Arctic sea ice and snow extent have led to an increase in the absorption of solar energy at the surface, resulting in additional surface heating and a further decline in snow and ice. Using 34 years of satellite data, 1982–2015, we found that the trend of solar absorption over the Arctic Ocean is more than double that over Arctic land, and the magnitude of the ice-albedo feedback is four times that of the snow-albedo feedback in summer. The time of the high-to-low albedo transition each year is moving toward the high sun of the summer solstice over ocean but moving away from the summer solstice over land. Therefore, decreasing sea ice cover, not changes in terrestrial snow cover, have been the dominant radiative feedback mechanism over the last few decades and may play an even bigger role in future Arctic climate change.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Günther Heinemann ◽  
Sascha Willmes ◽  
Lukas Schefczyk ◽  
Alexander Makshtas ◽  
Vasilii Kustov ◽  
...  

The parameterization of ocean/sea-ice/atmosphere interaction processes is a challenge for regional climate models (RCMs) of the Arctic, particularly for wintertime conditions, when small fractions of thin ice or open water cause strong modifications of the boundary layer. Thus, the treatment of sea ice and sub-grid flux parameterizations in RCMs is of crucial importance. However, verification data sets over sea ice for wintertime conditions are rare. In the present paper, data of the ship-based experiment Transarktika 2019 during the end of the Arctic winter for thick one-year ice conditions are presented. The data are used for the verification of the regional climate model COSMO-CLM (CCLM). In addition, Moderate Resolution Imaging Spectroradiometer (MODIS) data are used for the comparison of ice surface temperature (IST) simulations of the CCLM sea ice model. CCLM is used in a forecast mode (nested in ERA5) for the Norwegian and Barents Seas with 5 km resolution and is run with different configurations of the sea ice model and sub-grid flux parameterizations. The use of a new set of parameterizations yields improved results for the comparisons with in-situ data. Comparisons with MODIS IST allow for a verification over large areas and show also a good performance of CCLM. The comparison with twice-daily radiosonde ascents during Transarktika 2019, hourly microwave water vapor measurements of first 5 km in the atmosphere and hourly temperature profiler data show a very good representation of the temperature, humidity and wind structure of the whole troposphere for CCLM.


Author(s):  
Dmitry Yumashev ◽  
Chris Hope ◽  
Kevin Schaefer ◽  
Kathrin Riemann-Campe ◽  
Fernando Iglesias-Suarez ◽  
...  

Arctic feedbacks will accelerate climate change and could jeopardise mitigation efforts. The permafrost carbon feedback releases carbon to the atmosphere from thawing permafrost and the sea ice albedo feedback increases solar absorption in the Arctic Ocean. A constant positive albedo feedback and zero permafrost feedback have been used in nearly all climate policy studies to date, while observations and models show that the permafrost feedback is significant and that both feedbacks are nonlinear. Using novel dynamic emulators in the integrated assessment model PAGE-ICE, we investigate nonlinear interactions of the two feedbacks with the climate and economy under a range of climate scenarios consistent with the Paris Agreement. The permafrost feedback interacts with the land and ocean carbon uptake processes, and the albedo feedback evolves through a sequence of nonlinear transitions associated with the loss of Arctic sea ice in different months of the year. The US’s withdrawal from the current national pledges could increase the total discounted economic impact of the two Arctic feedbacks until 2300 by $25 trillion, reaching nearly $120 trillion, while meeting the 1.5 °C and 2 °C targets will reduce the impact by an order of magnitude.


2015 ◽  
Vol 9 (1) ◽  
pp. 399-409 ◽  
Author(s):  
Q. Shu ◽  
Z. Song ◽  
F. Qiao

Abstract. The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth system models with historical simulation, are used. For the Antarctic, multi-model ensemble mean (MME) results can give good climatology of sea ice extent (SIE), but the linear trend is incorrect. The linear trend of satellite-observed Antarctic SIE is 1.29 (±0.57) × 105 km2 decade−1; only about 1/7 CMIP5 models show increasing trends, and the linear trend of CMIP5 MME is negative with the value of −3.36 (±0.15) × 105 km2 decade−1. For the Arctic, both climatology and linear trend are better reproduced. Sea ice volume (SIV) is also evaluated in this study, and this is a first attempt to evaluate the SIV in all CMIP5 models. Compared with the GIOMAS and PIOMAS data, the SIV values in both the Antarctic and the Arctic are too small, especially for the Antarctic in spring and winter. The GIOMAS Antarctic SIV in September is 19.1 × 103 km3, while the corresponding Antarctic SIV of CMIP5 MME is 13.0 × 103 km3 (almost 32% less). The Arctic SIV of CMIP5 in April is 27.1 × 103 km3, which is also less than that from PIOMAS SIV (29.5 × 103 km3). This means that the sea ice thickness simulated in CMIP5 is too thin, although the SIE is fairly well simulated.


2020 ◽  
Author(s):  
Thomas Rackow ◽  
Sergey Danilov ◽  
Helge F. Goessling ◽  
Hartmut H. Hellmer ◽  
Dmitry V. Sein ◽  
...  

<p>Despite ongoing global warming and strong sea ice decline in the Arctic, the sea ice extent around the Antarctic continent has not declined during the satellite era since 1979. This is in stark contrast to existing climate models that tend to show a strong negative sea ice trend for the same period; hence the confidence in projected Antarctic sea-ice changes is considered to be low. In the years since 2016, there has been significantly lower Antarctic sea ice extent, which some consider a sign of imminent change; however, others have argued that sea ice extent is expected to regress to the weak decadal trend in the near future.</p><p>In this presentation, we show results from climate change projections with a new climate model that allows the simulation of mesoscale eddies in dynamically active ocean regions in a computationally efficient way. We find that the high-resolution configuration (HR) favours periods of stable Antarctic sea ice extent in September as observed over the satellite era. Sea ice is not projected to decline well into the 21<sup>st</sup> century in the HR simulations, which is similar to the delaying effect of, e.g., added glacial melt water in recent studies. The HR ocean configurations simulate an ocean heat transport that responds differently to global warming and is more efficient at moderating the anthropogenic warming of the Southern Ocean. As a consequence, decrease of Antarctic sea ice extent is significantly delayed, in contrast to what existing coarser-resolution climate models predict.</p><p>Other explanations why current models simulate a non-observed decline of Antarctic sea-ice have been put forward, including the choice of included sea ice physics and underestimated simulated trends in westerly winds. Our results provide an alternative mechanism that might be strong enough to explain the gap between modeled and observed trends alone.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Marika M. Holland ◽  
Laura Landrum

Under rising atmospheric greenhouse gas concentrations, the Arctic exhibits amplified warming relative to the globe. This Arctic amplification is a defining feature of global warming. However, the Arctic is also home to large internal variability, which can make the detection of a forced climate response difficult. Here we use results from seven model large ensembles, which have different rates of Arctic warming and sea ice loss, to assess the time of emergence of anthropogenically-forced Arctic amplification. We find that this time of emergence occurs at the turn of the century in all models, ranging across the models by a decade from 1994–2005. We also assess transient changes in this amplified signal across the 21st century and beyond. Over the 21st century, the projections indicate that the maximum Arctic warming will transition from fall to winter due to sea ice reductions that extend further into the fall. Additionally, the magnitude of the annual amplification signal declines over the 21st century associated in part with a weakening albedo feedback strength. In a simulation that extends to the 23rd century, we find that as sea ice cover is completely lost, there is little further reduction in the surface albedo and Arctic amplification saturates at a level that is reduced from its 21st century value.


2010 ◽  
Vol 23 (10) ◽  
pp. 2520-2543 ◽  
Author(s):  
Nikolay V. Koldunov ◽  
Detlef Stammer ◽  
Jochem Marotzke

Abstract As a contribution to a detailed evaluation of Intergovernmental Panel on Climate Change (IPCC)-type coupled climate models against observations, this study analyzes Arctic sea ice parameters simulated by the Max-Planck-Institute for Meteorology (MPI-M) fully coupled climate model ECHAM5/Max-Planck-Institute for Meteorology Hamburg Primitive Equation Ocean Model (MPI-OM) for the period from 1980 to 1999 and compares them with observations collected during field programs and by satellites. Results of the coupled run forced by twentieth-century CO2 concentrations show significant discrepancies during summer months with respect to observations of the spatial distribution of the ice concentration and ice thickness. Equally important, the coupled run lacks interannual variability in all ice and Arctic Ocean parameters. Causes for such big discrepancies arise from errors in the ECHAM5/MPI-OM atmosphere and associated errors in surface forcing fields (especially wind stress). This includes mean bias pattern caused by an artificial circulation around the geometric North Pole in its atmosphere, as well as insufficient atmospheric variability in the ECHAM5/MPI-OM model, for example, associated with Arctic Oscillation/North Atlantic Oscillation (AO/NAO). In contrast, the identical coupled ocean–ice model, when driven by NCEP–NCAR reanalysis fields, shows much increased skill in its ice and ocean circulation parameters. However, common to both model runs is too strong an ice export through the Fram Strait and a substantially biased heat content in the interior of the Arctic Ocean, both of which may affect sea ice budgets in centennial projections of the Arctic climate system.


2015 ◽  
Vol 28 (16) ◽  
pp. 6335-6350 ◽  
Author(s):  
F. Krikken ◽  
W. Hazeleger

Abstract The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study analyzes the natural variability of Arctic sea ice from an energy budget perspective, using 15 climate models from phase 5 of CMIP (CMIP5), and compares these results to reanalysis data. The authors quantify the persistence of sea ice anomalies and the cross correlation with the surface and top-of-atmosphere energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal ice–albedo feedback, through which sea ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of the ocean lies mainly in storing heat content anomalies in spring and releasing them in autumn. Ocean heat flux variations play only a minor role. Confirming a previous (observational) study, the authors demonstrate that there is no direct atmospheric response of clouds to spring sea ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud–ice feedback in late spring and summer, but there is a cloud–ice feedback in autumn, which strengthens the ice–albedo feedback. Anomalies in insolation are positively correlated with sea ice variability. This is primarily a result of reduced multiple reflection of insolation due to an albedo decrease. This effect counteracts the ice-albedo effect up to 50%. ERA-Interim and Ocean Reanalysis System 4 (ORAS4) confirm the main findings from the climate models.


Sign in / Sign up

Export Citation Format

Share Document