scholarly journals Soil-Water Characteristics and Creep Deformation of Unsaturated Expansive Subgrade Soil: Experimental Test and Simulation

2021 ◽  
Vol 9 ◽  
Author(s):  
Yongsheng Yao ◽  
Jue Li ◽  
Ziqiong Xiao ◽  
Hongbin Xiao

The creep deformation of expansive soil has been considered as a vital threat to the safety in engineering construction because it may cause serious slope diseases in geological engineering. Meanwhile, since expansive soil usually remains in unsaturated state, its mechanical property is significantly affected by the seasonal environment. Therefore, the nonlinear deformation of expansive soil has received increasing attention, especially the humidity-dependent creep properties. This study focused on the stability of the unsaturated expansive soil subgrade considering rainfall and the creep behavior. Pressure plate extractor and direct shear tests were performed to investigate the hydro-mechanical and creep characteristics of the unsaturated expansive soil. Both the Van-Genuchten and Burgers models were applied to analyze the test results and inserted into the numerical model of the slope under rainfall infiltration. Results show that the compaction degree and the stress state was closely related to the water holding capacity of the expansive soil. The nonlinearity of the creep behavior became increasingly obvious with the increase of time and the stress level. The safety factor of the slope decreased as the rainfall time increased, and the most dangerous slide of the slope moved toward the foot of the slope. Considering the long-term creep process, there was a period of rapid growth in horizontal displacement that is detrimental to the stability of the slope. Besides, the rainfall infiltration could accelerate the slope failure before and after this creep process.

2021 ◽  
Vol 337 ◽  
pp. 03009
Author(s):  
Mengxi Tan ◽  
Sai K. Vanapalli

In the last two decades, there has been a significant increase in infrastructure development on slopes of hilly regions of the world, due to population growth. There are many infrastructures on unsaturated expansive slopes, especially in semi-arid and arid regions. Rainfall infiltration is one of the major factors that contributes to the slope and infrastructure foundations failures on hilly slopes with unsaturated expansive soils. In the current study, a rational approach is proposed considering the combined influence of the foundation-slope behavior based on the principles of unsaturated soil mechanics. This is achieved by a novel numerical modelling approach using the commercial software Geo-studio to investigate the performance of strip foundation located on the top of the unsaturated expansive soil slope subjected to various rainfall infiltration conditions. Hydro-mechanical coupling analysis is conducted to evaluate the rainfall water infiltration influence combined with slope stability analysis using limit equilibrium method. Comparisons are made between both the foundation bearing capacity, slope stability before and after rainfall water infiltration. Different failure mechanisms of the foundation and slope system are presented with and without foundation loading for various rainfall scenarios. Results summarized in this paper are helpful for the geotechnical engineers for understanding the performance of shallow foundations on unsaturated expansive soil slopes considering the influence of rainfall infiltration conditions.


2007 ◽  
Vol 44 (4) ◽  
pp. 392-408 ◽  
Author(s):  
Tony LT Zhan ◽  
Charles WW Ng ◽  
Del G Fredlund

A full-scale field study was conducted to investigate the effects of rainfall infiltration on a natural grassed expansive soil slope in China. A 16 m wide × 28 m long area was selected for instrumentation. The instrumentation included jet-filled tensiometers, moisture probes, a tipping bucket rain gauge, and a vee-notch flow meter. One artificial rainfall event amounting to about 370 mm rain depth in total was applied to the slope. The monitored results suggested that there was about a 3 day delay in the response of surface runoff, pore-water pressure, and water content to the commencement of the simulated rainfall. The depth of influence of the rainfall, depending on the elevation along the slope, ranged from 2.8 to 3.5 m. Positive pore-water pressures were measured within the influence depth, and there existed significant subsurface downslope flow at the end of the simulated rainfall, particularly near the lower part of the slope. A comparison of infiltration rates between the grassed area and a bare area nearby indicated that the presence of grass significantly increased the infiltration rate and reduced surface runoff. The cracks and fissures developed in the unsaturated expansive soil played an important role in the hydrological process.Key words: expansive soil, slope instability, infiltration, vegetation cover, grass, soil suction, water content, unsaturated soil.


Géotechnique ◽  
2003 ◽  
Vol 53 (2) ◽  
pp. 143-157 ◽  
Author(s):  
C. W. W. Ng ◽  
L. T. Zhan ◽  
C. G. Bao ◽  
D. G. Fredlund ◽  
B. W. Gong

2021 ◽  
Vol 16 (4) ◽  
pp. 512-520
Author(s):  
The Viet Tran ◽  
Hoang Viet Hung ◽  
Huy Dung Pham ◽  
Go Sato ◽  
Hoang Hiep Vu ◽  
...  

In this study, the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS), v2.1 program, and module SLOPE/W in the Geostudio package were adopted for assessing rainfall-induced slope failure. TRIGRS was developed by the United States Geological Survey to determine the time-varying groundwater table at the regional scale under rainfall infiltration. The program employs partial differential equations represented by one-dimensional vertical flow in homogeneous materials for unsaturated conditions. With the application of a simple runoff routing scheme combined with the mass balance between rainfall, infiltration, and runoff over the study area, the distribution of the transient pore-water pressures within the entire landscape was simulated considering both the surface and subsurface flow. Additionally, compared to the traditional two-dimensional approach, the topographical conditions were also considered during the groundwater simulation. For conducting the slope stability analysis, a typical cross-section was constructed based on the site description. The predicted water-tables at the observed time of failure of the typical section were extracted and used in SLOPE/W to conduct the time-dependent modelling of rainfall-induced slope failures. In this study, the non-linear method was employed for simulating unsaturated soil shear strength, and the stability of the slope was evaluated using Bishop’s simplified method. We applied the approach to the landslide event that occurred on August 5, 2019, in Sapa district, Lao Cai province, Vietnam. The event resulted in severe damage and blocked the road for days. The predicted results on the stability of the slope as the factor of safety were compared with the actual slope failure during the event. The results showed that, by inputting accurate data, the applied approach could provide valuable evidence about the time of the slope failure.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2353
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a unified phenomenological creep model for polymer-bonded composite materials, allowing for predicting the creep behavior in the three creep stages, namely the primary, the secondary, and the tertiary stages under sustained compressive stresses. Creep testing is performed using material specimens under several conditions with a temperature range of 20 °C–50 °C and a compressive stress range of 15 MPa–25 MPa. The testing data reveal that the strain rate–time response exhibits the transient, steady, and unstable stages under each of the testing conditions. A rational function-based creep rate equation is proposed to describe the full creep behavior under each of the testing conditions. By further correlating the resulting model parameters with temperature and stress and developing a Larson–Miller parameter-based rupture time prediction model, a unified phenomenological model is established. An independent validation dataset and third-party testing data are used to verify the effectiveness and accuracy of the proposed model. The performance of the proposed model is compared with that of an existing reference model. The verification and comparison results show that the model can describe all the three stages of the creep process, and the proposed model outperforms the reference model by yielding 28.5% smaller root mean squared errors on average.


2014 ◽  
Vol 501-504 ◽  
pp. 359-367
Author(s):  
Feng Zhou ◽  
Kai Zhang ◽  
Ying Chun Tang

This paper summarizes and analyzes the basic concepts and ecological protection mechanism for expansion geotechnical slope failure mechanism and the resulting impact on the shallow, traction engineering properties such as analysis, proposed ecological slope of expansive soil slope mechanism of action: vegetation system by improving internal slope soil moisture and temperature changes affect the atmosphere and thus effectively reduce the depth. Vegetation root through reinforced anchoring, delay time and improving soil hydration ductility such as the role played good strength enhancement. Vegetation formation can effectively improve the damaged outer slope interface morphology, to restore the ecological environment and landscape effect. Integrating the past experience on expansive soil slope treatment, this paper provide a slope treatment method used in Nanning metro Tunli section, these will provide reference for the expansive soil slope ecological management.


Sign in / Sign up

Export Citation Format

Share Document