scholarly journals High-Resolution Recording of the Circadian Oscillator in Primary Mouse α- and β-Cell Culture

2017 ◽  
Vol 8 ◽  
Author(s):  
Volodymyr Petrenko ◽  
Yvan Gosmain ◽  
Charna Dibner
Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58 ◽  
Author(s):  
Michael D. Schaid ◽  
Yanlong Zhu ◽  
Nicole E. Richardson ◽  
Chinmai Patibandla ◽  
Irene M. Ong ◽  
...  

The transition from β-cell compensation to β-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional β-cell mass in Type 2 diabetes (T2D). The primary endogenous EP3 ligand is the arachidonic acid metabolite prostaglandin E2 (PGE2). Expression of the pancreatic islet EP3 and PGE2 synthetic enzymes and/or PGE2 excretion itself have all been shown to be upregulated in primary mouse and human islets isolated from animals or human organ donors with established T2D compared to nondiabetic controls. In this study, we took advantage of a rare and fleeting phenotype in which a subset of Black and Tan BRachyury (BTBR) mice homozygous for the Leptinob/ob mutation—a strong genetic model of T2D—were entirely protected from fasting hyperglycemia even with equal obesity and insulin resistance as their hyperglycemic littermates. Utilizing this model, we found numerous alterations in full-body metabolic parameters in T2D-protected mice (e.g., gut microbiome composition, circulating pancreatic and incretin hormones, and markers of systemic inflammation) that correlate with improvements in EP3-mediated β-cell dysfunction.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2251-2260 ◽  
Author(s):  
Jennifer L. Beith ◽  
Emilyn U. Alejandro ◽  
James D. Johnson

A relative decrease in β-cell mass is key in the pathogenesis of type 1 diabetes, type 2 diabetes, and in the failure of transplanted islet grafts. It is now clear that β-cell duplication plays a dominant role in the regulation of adult β-cell mass. Therefore, knowledge of the endogenous regulators of β-cell replication is critical for understanding the physiological control of β-cell mass and for harnessing this process therapeutically. We have shown that concentrations of insulin known to exist in vivo act directly on β-cells to promote survival. Whether insulin stimulates adult β-cell proliferation remains unclear. We tested this hypothesis using dispersed primary mouse islet cells double labeled with 5-bromo-2-deoxyuridine and insulin antisera. Treating cells with 200-pm insulin significantly increased proliferation from a baseline rate of 0.15% per day. Elevating glucose from 5–15 mm did not significantly increase β-cell replication. β-Cell proliferation was inhibited by somatostatin as well as inhibitors of insulin signaling. Interestingly, inhibiting Raf-1 kinase blocked proliferation stimulated by low, but not high (superphysiological), insulin doses. Insulin-stimulated mouse insulinoma cell proliferation was dependent on both phosphatidylinositol 3-kinase/Akt and Raf-1/MAPK kinase pathways. Overexpression of Raf-1 was sufficient to increase proliferation in the absence of insulin, whereas a dominant-negative Raf-1 reduced proliferation in the presence of 200-pm insulin. Together, these results demonstrate for the first time that insulin, at levels that have been measured in vivo, can directly stimulate β-cell proliferation and that Raf-1 kinase is involved in this process. These findings have significant implications for the understanding of the regulation of β-cell mass in both the hyperinsulinemic and insulin-deficient states that occur in the various forms of diabetes.


2014 ◽  
Vol 306 (12) ◽  
pp. E1460-E1467 ◽  
Author(s):  
Maria L. Golson ◽  
William S. Bush ◽  
Marcela Brissova

β-Cell mass is a parameter commonly measured in studies of islet biology and diabetes. However, the rigorous quantification of pancreatic β-cell mass using conventional histological methods is a time-consuming process. Rapidly evolving virtual slide technology with high-resolution slide scanners and newly developed image analysis tools has the potential to transform β-cell mass measurement. To test the effectiveness and accuracy of this new approach, we assessed pancreata from normal C57Bl/6J mice and from mouse models of β-cell ablation (streptozotocin-treated mice) and β-cell hyperplasia (leptin-deficient mice), using a standardized systematic sampling of pancreatic specimens. Our data indicate that automated analysis of virtual pancreatic slides is highly reliable and yields results consistent with those obtained by conventional morphometric analysis. This new methodology will allow investigators to dramatically reduce the time required for β-cell mass measurement by automating high-resolution image capture and analysis of entire pancreatic sections.


Author(s):  
Li Hu ◽  
Fengli He ◽  
Yan Luo ◽  
Hairong Luo ◽  
Luo Hai ◽  
...  

Abstract Background High-fat-diet induces pancreatic β-cell compensatory proliferation, and impairments in pancreatic β-cell proliferation and function can lead to defects in insulin secretion and diabetes. NFATc3 is important for HFD-induced adipose tissue inflammation. But it is unknown whether NFATc3 is required for β cell compensatory growth in mice fed with HFD. Methods NFATc3 mRNA and protein expression levels were quantified by RT-qPCR and Western blotting, respectively, in pancreatic islets of WT mice fed on HFD for 12–20 weeks. Adenoviral-mediated overexpression of NFATc3 were conducted in Min6 cells and cultured primary mouse islets. NFATc3-/- mice and WT control mice were fed with HFD and metabolic and functional parameters were measured. Results We observed that the NFATc3 expression level was reduced in the islets of high-fat-diet (HFD)-fed mice. Adenovirus-mediated overexpression of NFATc3 enhanced glucose-stimulated insulin secretion and β-cell gene expression in cultured primary mouse islets. Nfatc3-/- mice initially developed similar glucose tolerance at 2–4 weeks after HFD feeding than HFD-fed WT mice, but Nfatc3-/- mice developed improved glucose tolerance and insulin sensitivity after 8 weeks of HFD feeding compared to Nfatc3+/+fed with HFD. Furthermore, Nfatc3-/- mice on HFD exhibited decreased β-cell mass and reduced expression of genes important for β-cell proliferation and function compared to Nfatc3+/+mice on HFD. Conclusions The findings suggested that NFATc3 played a role in maintaining the pancreatic β-cell compensatory growth and gene expression in response to obesity.


Sign in / Sign up

Export Citation Format

Share Document