scholarly journals Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures

2022 ◽  
Vol 12 ◽  
Author(s):  
Nico Sollmann ◽  
Edoardo A. Becherucci ◽  
Christof Boehm ◽  
Malek El Husseini ◽  
Stefan Ruschke ◽  
...  

PurposeOsteoporosis is a highly prevalent skeletal disease that frequently entails vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture analysis can provide surrogate markers of tissue microstructure based on computed tomography (CT) or magnetic resonance imaging (MRI) data of the spine, thus potentially improving fracture risk estimation beyond areal BMD. However, it is largely unknown whether MRI-derived texture analysis can predict volumetric BMD (vBMD), or whether a model incorporating texture analysis based on CT and MRI may be capable of differentiating between patients with and without osteoporotic vertebral fractures.Materials and MethodsTwenty-six patients (15 females, median age: 73 years, 11 patients showing at least one osteoporotic vertebral fracture) who had CT and 3-Tesla chemical shift encoding-based water-fat MRI (CSE-MRI) available were analyzed. In total, 171 vertebral bodies of the thoracolumbar spine were segmented using an automatic convolutional neural network (CNN)-based framework, followed by extraction of integral and trabecular vBMD using CT data. For CSE-MRI, manual segmentation of vertebral bodies and consecutive extraction of the mean proton density fat fraction (PDFF) and T2* was performed. First-order, second-order, and higher-order texture features were derived from texture analysis using CT and CSE-MRI data. Stepwise multivariate linear regression models were computed using integral vBMD and fracture status as dependent variables.ResultsPatients with osteoporotic vertebral fractures showed significantly lower integral and trabecular vBMD when compared to patients without fractures (p<0.001). For the model with integral vBMD as the dependent variable, T2* combined with three PDFF-based texture features explained 40% of the variance (adjusted R2[Ra2] = 0.40; p<0.001). Furthermore, regarding the differentiation between patients with and without osteoporotic vertebral fractures, a model including texture features from CT and CSE-MRI data showed better performance than a model based on integral vBMD and PDFF only (Ra2 = 0.47 vs. Ra2 = 0.81; included texture features in the final model: integral vBMD, CT_Short-run_emphasis, CT_Varianceglobal, and PDFF_Variance).ConclusionUsing texture analysis for spine CT and CSE-MRI can facilitate the differentiation between patients with and without osteoporotic vertebral fractures, implicating that future fracture prediction in osteoporosis may be improved.

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 455
Author(s):  
Nico Sollmann ◽  
Nithin Manohar Rayudu ◽  
Long Yu Yeung ◽  
Anjany Sekuboyina ◽  
Egon Burian ◽  
...  

Assessment of osteoporosis-associated fracture risk during clinical routine is based on the evaluation of clinical risk factors and T-scores, as derived from measurements of areal bone mineral density (aBMD). However, these parameters are limited in their ability to identify patients at high fracture risk. Finite element models (FEMs) have shown to improve bone strength prediction beyond aBMD. This study aims to investigate whether FEM measurements at the lumbar spine can predict the biomechanical strength of functional spinal units (FSUs) with incidental osteoporotic vertebral fractures (VFs) along the thoracolumbar spine. Multi-detector computed tomography (MDCT) data of 11 patients (5 females and 6 males, median age: 67 years) who underwent MDCT twice (median interval between baseline and follow-up MDCT: 18 months) and sustained an incidental osteoporotic VF between baseline and follow-up scanning were used. Based on baseline MDCT data, two FSUs consisting of vertebral bodies and intervertebral discs (IVDs) were modeled: one standardly capturing L1-IVD–L2-IVD–L3 (FSU_L1–L3) and one modeling the incidentally fractured vertebral body at the center of the FSU (FSU_F). Furthermore, volumetric BMD (vBMD) derived from MDCT, FEM-based displacement, and FEM-based load of the single vertebrae L1 to L3 were determined. Statistically significant correlations (adjusted for a BMD ratio of fracture/L1–L3 segments) were revealed between the FSU_F and mean load of L1 to L3 (r = 0.814, p = 0.004) and the mean vBMD of L1 to L3 (r = 0.745, p = 0.013), whereas there was no statistically significant association between the FSU_F and FSU_L1–L3 or between FSU_F and the mean displacement of L1 to L3 (p > 0.05). In conclusion, FEM measurements of single vertebrae at the lumbar spine may be able to predict the biomechanical strength of incidentally fractured vertebral segments along the thoracolumbar spine, while FSUs seem to predict only segment-specific fracture risk.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 302
Author(s):  
Michael Dieckmeyer ◽  
Stephanie Inhuber ◽  
Sarah Schläger ◽  
Dominik Weidlich ◽  
Muthu R. K. Mookiah ◽  
...  

Purpose: Based on conventional and quantitative magnetic resonance imaging (MRI), texture analysis (TA) has shown encouraging results as a biomarker for tissue structure. Chemical shift encoding-based water–fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) of thigh muscles has been associated with musculoskeletal, metabolic, and neuromuscular disorders and was demonstrated to predict muscle strength. The purpose of this study was to investigate PDFF-based TA of thigh muscles as a predictor of thigh muscle strength in comparison to mean PDFF. Methods: 30 healthy subjects (age = 30 ± 6 years; 15 females) underwent CSE-MRI of the lumbar spine at 3T, using a six-echo 3D spoiled gradient echo sequence. Quadriceps (EXT) and ischiocrural (FLEX) muscles were segmented to extract mean PDFF and texture features. Muscle flexion and extension strength were measured with an isokinetic dynamometer. Results: Of the eleven extracted texture features, Variance(global) showed the highest significant correlation with extension strength (p < 0.001, R2adj = 0.712), and Correlation showed the highest significant correlation with flexion strength (p = 0.016, R2adj = 0.658). Multivariate linear regression models identified Variance(global) and sex, but not PDFF, as significant predictors of extension strength (R2adj = 0.709; p < 0.001), while mean PDFF, sex, and BMI, but none of the texture features, were identified as significant predictors of flexion strength (R2adj = 0.674; p < 0.001). Conclusions: Prediction of quadriceps muscle strength can be improved beyond mean PDFF by means of TA, indicating the capability to quantify muscular fat infiltration patterns.


2011 ◽  
Vol 129 (3) ◽  
pp. 139-145 ◽  
Author(s):  
Daniela Fodor ◽  
Cosmina Bondor ◽  
Adriana Albu ◽  
Laura Muntean ◽  
Siao-pin Simon ◽  
...  

CONTEXT AND OBJECTIVES: Controversy exists regarding the relationship between atherosclerosis and osteoporosis. The aim of this study was to determine the relationship between intima-media thickness (IMT) of the common carotid artery (CCA), presence of calcified atherosclerotic plaques and bone mineral density (BMD) evaluated by dual energy X-ray absorptiometry (DXA), in postmenopausal women. DESIGN AND SETTING: Cross-sectional study at Second Internal Medicine Clinic, Cluj-Napoca, Romania. METHODS: We studied the IMT (left and right CCA and mean IMT) and T-score (lumbar spine L2-L4, femoral neck and total hip) in 100 postmenopausal women (mean age 64.5 years). The presence of calcified atherosclerotic plaque and osteoporotic vertebral fractures was also noted. RESULTS: IMT in the left and right CCA and mean IMT were significantly associated with T-score measured for the lumbar spine L2-L4, femoral neck and total hip, with lower T-score, in the osteoporotic group than in the normal and osteopenic groups (P < 0.05). IMT had a significantly negative correlation with the lumbar spine T-score and femoral neck T-score; and mean IMT with lowest T-score. Mean IMT (P < 0.001), high blood pressure (P = 0.005) and osteoporotic vertebral fractures (P = 0.048) showed statistical significance regarding the likelihood of developing atherosclerotic plaque. CONCLUSIONS: In women referred for routine osteoporosis screening, the relationship between CCA, atherosclerosis and osteoporosis can be demonstrated using either cortical or trabecular BMD. Vertebral fractures may be considered to be a likelihood factor for atherosclerotic plaque development.


2020 ◽  
pp. 084653712094352
Author(s):  
Brian C. Lentle ◽  
Claudie Berger ◽  
Jacques P. Brown ◽  
Linda Probyn ◽  
Lisa Langsetmo ◽  
...  

Study Purpose: Morphometric methods categorize potential osteoporotic vertebral fractures (OVF) on the basis of loss of vertebral height. A particular example is the widely used semiquantitative morphometric tool proposed by Genant (GSQ). A newer morphologic algorithm-based qualitative (mABQ) tool focuses on vertebral end-plate damage in recognizing OVF. We used data from both sexes in the Canadian Multicentre Osteoporosis Study (CaMos) to compare the 2 methods in identifying OVF at baseline and during 10 years of follow-up. Materials and Methods: We obtained lateral thoracic and lumbar spinal radiographs (T4-L4) 3 times, at 5-year intervals, in 828 participants of the population-based CaMos. Logistic regressions were used to study the association of 10-year changes in bone mineral density (BMD) with incident fractures. Results: At baseline, 161 participants had grade 1 and 32 had grade 2 GSQ OVF; over the next 10 years, only 9 of these participants had sustained incident GSQ OVF. Contrastingly, 21 participants at baseline had grade 1 and 48 grade 2 mABQ events; over the next 10 years, 79 subjects experienced incident grade 1 or grade 2 mABQ events. Thus, incident grades 1 and 2 morphologic fractures were 8 times more common than morphometric deformities alone. Each 10-year decrease of 0.01 g/cm2 in total hip BMD was associated with a 4.1% (95% CI: 0.7-7.3) higher odds of having an incident vertebral fracture. Conclusions: This analysis further suggests that morphometric deformities and morphologic fractures constitute distinct entities; morphologic fractures conform more closely to the expected epidemiology of OVF.


2012 ◽  
Vol 30 (22) ◽  
pp. 2760-2767 ◽  
Author(s):  
Nathalie Alos ◽  
Ronald M. Grant ◽  
Timothy Ramsay ◽  
Jacqueline Halton ◽  
Elizabeth A. Cummings ◽  
...  

Purpose Vertebral fractures due to osteoporosis are a potential complication of childhood acute lymphoblastic leukemia (ALL). To date, the incidence of vertebral fractures during ALL treatment has not been reported. Patient and Methods We prospectively evaluated 155 children with ALL during the first 12 months of leukemia therapy. Lateral thoracolumbar spine radiographs were obtained at baseline and 12 months. Vertebral bodies were assessed for incident vertebral fractures using the Genant semiquantitative method, and relevant clinical indices such as spine bone mineral density (BMD), back pain, and the presence of vertebral fractures at baseline were analyzed for association with incident vertebral fractures. Results Of the 155 children, 25 (16%; 95% CI, 11% to 23%) had a total of 61 incident vertebral fractures, of which 32 (52%) were moderate or severe. Thirteen (52%) of the 25 children with incident vertebral fractures also had fractures at baseline. Vertebral fractures at baseline increased the odds of an incident fracture at 12 months by an odds ratio of 7.3 (95% CI, 2.3 to 23.1; P = .001). In addition, for every one standard deviation reduction in spine BMD Z-score at baseline, there was 1.8-fold increased odds of incident vertebral fracture at 12 months (95% CI, 1.2 to 2.7; P = .006). Conclusion Children with ALL have a high incidence of vertebral fractures after 12 months of chemotherapy, and the presence of vertebral fractures and reductions in spine BMD Z-scores at baseline are highly associated clinical features.


2007 ◽  
Vol 18 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Michael B. Pitton ◽  
Nadine Morgen ◽  
Sascha Herber ◽  
Philipp Drees ◽  
Bertram Böhm ◽  
...  

2014 ◽  
Vol 37 (1) ◽  
pp. E3 ◽  
Author(s):  
Victor Chang ◽  
Langston T. Holly

Traumatic fractures of the thoracolumbar spine are relatively common occurrences that can be a source of pain and disability. Similarly, osteoporotic vertebral fractures are also frequent events and represent a significant health issue specific to the elderly. Neurologically intact patients with traumatic thoracolumbar fractures can commonly be treated nonoperatively with bracing. Nonoperative treatment is not suitable for patients with neurological deficits or highly unstable fractures. The role of operative versus nonoperative treatment of burst fractures is controversial, with high-quality evidence supporting both options. Osteoporotic vertebral fractures can be managed with bracing or vertebral augmentation in most cases. There is, however, a lack of high-quality evidence comparing operative versus nonoperative fractures in this population. Bracing is a low-risk, cost-effective method to treat certain thoracolumbar fractures and offers efficacy equivalent to that of surgical management in many cases. The evidence for bracing of osteoporotic-type fractures is less clear, and further investigation will be necessary to delineate its optimal role.


Sign in / Sign up

Export Citation Format

Share Document