scholarly journals The Formation, Detriment and Solution of Residual Lithium Compounds on Ni-Rich Layered Oxides in Lithium-Ion Batteries

2020 ◽  
Vol 8 ◽  
Author(s):  
Anqi Chen ◽  
Kun Wang ◽  
Jiaojiao Li ◽  
Qinzhong Mao ◽  
Zhen Xiao ◽  
...  

Ni-rich layered transition-metal oxides with high specific capacity and energy density are regarded as one of the most promising cathode materials for next generation lithium-ion batteries. However, the notorious surface impurities and high air sensitivity of Ni-rich layered oxides remain great challenges for its large-scale application. In this respect, surface impurities are mainly derived from excessive Li addition to reduce the Li/Ni mixing degree and to compensate for the Li volatilization during sintering. Owing to the high sensitivity to moisture and CO2 in ambient air, the Ni-rich layered oxides are prone to form residual lithium compounds (e.g. LiOH and Li2CO3) on the surface, subsequently engendering the detrimental subsurface phase transformation. Consequently, Ni-rich layered oxides often have inferior storage and processing performance. More seriously, the residual lithium compounds increase the cell polarization, as well as aggravate battery swelling during long-term cycling. This review focuses on the origin and evolution of residual lithium compounds. Moreover, the negative effects of residual lithium compounds on storage performance, processing performance and electrochemical performance are discussed in detail. Finally, the feasible solutions and future prospects on how to reduce or even eliminate residual lithium compounds are proposed.

RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2021 ◽  
Author(s):  
Yuan Fang ◽  
Tengfei Li ◽  
Fen Wang ◽  
Jianfeng Zhu

Abstract Transition metal oxides as anode materials have received extensive research owing to the high specific capacity. Whereas, the rapid decline of battery capacity caused by volume expansion and low electrical conductivity hinders the practical application of transition metal oxides. This study reported a pseudo-capacitance material polypyrrole coated Fe2O3/Mn2O3 composites material as a high stability anode for lithium-ion batteries. The polypyrrole coating layer can not only serve as a conductive network to improve electrode conductivity but also can be used as a protective buffer layer to suppress the volume change of Fe2O3/Mn2O3 during the charging and discharging process. At the same time, the porous structure of Fe2O3/Mn2O3 composite can not only provide more active sites for lithium storage but also play a certain buffer effect on the volume change of the material. Polypyrrole-coated Fe2O3/Mn2O3 composite as the anode for lithium-ion batteries shows great electrochemical storage performance, with high specific capacity (627 mAh g− 1 at a current density of 1A g− 1), great cycle stability (the capacity not shows obvious signs of attenuation after 500 cycles) and rate performance (432 mAh g− 1 at a current density of 2.0 A g− 1).


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 367
Author(s):  
Yueyue Kong ◽  
Ranran Jiao ◽  
Suyuan Zeng ◽  
Chuansheng Cui ◽  
Haibo Li ◽  
...  

Among the transition metal oxides, the Mn3O4 nanostructure possesses high theoretical specific capacity and lower operating voltage. However, the low electrical conductivity of Mn3O4 decreases its specific capacity and restricts its application in the energy conversion and energy storage. In this work, well-shaped, octahedron-like Mn3O4 nanocrystals were prepared by one-step hydrothermal reduction method. Field emission scanning electron microscope, energy dispersive spectrometer, X-ray diffractometer, X-ray photoelectron spectrometer, high resolution transmission electron microscopy, and Fourier transformation infrared spectrometer were applied to characterize the morphology, the structure, and the composition of formed product. The growth mechanism of Mn3O4 nano-octahedron was studied. Cyclic voltammograms, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and rate performance were used to study the electrochemical properties of obtained samples. The experimental results indicate that the component of initial reactants can influence the morphology and composition of the formed manganese oxide. At the current density of 1.0 A g−1, the discharge specific capacity of as-prepared Mn3O4 nano-octahedrons maintains at about 450 mAh g−1 after 300 cycles. This work proves that the formed Mn3O4 nano-octahedrons possess an excellent reversibility and display promising electrochemical properties for the preparation of lithium-ion batteries.


2021 ◽  
Author(s):  
Ni Wen ◽  
Siyuan Chen ◽  
xiaolong Li ◽  
Ke Zhang ◽  
Jingjie Feng ◽  
...  

Transition metal oxides (TMOs) are prospective anode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity. Whereas, the inherent low conductivity of TMOs restricts its application. Given...


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Manisha Phadatare ◽  
Rohan Patil ◽  
Nicklas Blomquist ◽  
Sven Forsberg ◽  
Jonas Örtegren ◽  
...  

Abstract To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g−1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g−1.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongsheng Zhou ◽  
Yingchun Zhu ◽  
Bingshe Xu ◽  
Xueji Zhang ◽  
Khalid A. Al-Ghanim ◽  
...  

Abstract Lithium-ion batteries (LIBs) are considered new generation of large-scale energy-storage devices. However, LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability. In this work, we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) for LIBs. The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1, and was able to maintain a stable reversible discharge capacity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic efficiency reaching almost 100% for 200 cycles. The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.


Author(s):  
Wen Li ◽  
Zimo Bi ◽  
Wenxin Zhang ◽  
Jian Wang ◽  
Ranjusha Rajagopalan ◽  
...  

The development of lithium-ion batteries (LIBs) is facing a huge challenge due to the high cost and insufficient lithium resources. With the large-scale application of electric vehicles and portable electronics,...


2019 ◽  
Vol 85 (9) ◽  
pp. 44-57
Author(s):  
Sergiy Malovanyy

The rechargeable lithium-ion batteries have been dominating the portable electronic market for the past two decades with high energy density and long cycle-life. However, applications of lithium-ion batteries in large-scale stationary energy storage are likely to be limited by the high cost and availability of lithium resources. The room temperature Na-ion secondary battery have received extensive investigations for large-scale energy storage systems (EESs) and smart grids lately due to similar chemistry of “rocking-chair” sodium storage mechanism, lower price and huge abundance. They are considered as an alternative to lithium-ion batteries for large-scale applications, bringing an increasing research interests in materials for sodium-ion batteries. Although there are many obstacles to overcome before the Na-ion battery becomes commercially available, recent research discoveries corroborate that some of the cathode materials for the Na-ion battery have indeed advantages over its Li-ion competitors. Layered oxides are promising cathode materials for sodium ion batteries because of their high theoretical capacities. In this publication, a review of layered oxides (NaxMO2, M = V, Cr, Mn, Fe, Co, Ni, and a mixture of 2 or 3 elements) as a Na-ion battery cathode is presented. O3 and P2 layered sodium transition metal oxides  NaxMO2 are a promising class of cathode materials for Na secondary battery applications. These materials, however, all suffer from capacity decline when the extraction of Na exceeds certain capacity limits. Understanding the causes of this capacity decay is critical to unlocking the potential of these materials for battery applications.  Single layered oxide systems are well characterized not only for their electrochemical performance, but also for their structural transitions during the cycle. Binary oxides systems are investigated in order to address issues regarding low reversible capacity, capacity retention, operating voltage, and structural stability. Some materials already have reached high energy density, which is comparable to that of LiFePO4. On the other hand, the carefully chosen elements in the electrodes also largely determine the cost of SIBs. Therefore, earth abundant-based compounds are ideal candidates for reducing the cost of electrodes. Among all low-cost metal elements, cathodes containing iron, chromium and manganese are the most representative ones. The aim of the article is to present the development of Na layered oxide materials in the past as well as the state of the art today.


2021 ◽  
Author(s):  
Yuxi Guo ◽  
Panpan Xu ◽  
Manzhang Xu ◽  
Ken Deng ◽  
Zhiyong Zhang ◽  
...  

Abstract Novel hollow flower-like SnO structures have been successfully synthesized by using a facile solvothermal method approach, which injecting LiN(SiMe3)2 to the solution of SnCl2 and oleamine. The as-synthesized hollow flower-like SnO structures were aggregated by ultrathin SnO nanosheets with large surface area and exhibit narrow size distribution of ~2.0 µm. The electrochemical performance of hollow flower-like SnO structures were examined as an anode material in coin cells for lithium-ion batteries. It demonstrates excellent lithium ion batteries performance as characterized by the cycling stability, specific capacity, cyclic voltammetry and rate performance. The measured discharge capacity is 361.4 mAh g-1 after 50 charge/discharge cycles with 46% capacity retention, which indicated a improving in cyclic stability. This result demonstrated that the specific hollow structure has great potential as the electrodes for lithium ion batteries. This work may provide an attractive road to synthesize other hollow-flower structures of transition metal oxides.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Junhao Li ◽  
Ningyi Jiang ◽  
Jinyun Liao ◽  
Yufa Feng ◽  
Quanbing Liu ◽  
...  

Transition metal oxide is one of the most promising anode materials for lithium-ion batteries. Generally, the electrochemical property of transition metal oxides can be improved by optimizing their element components and controlling their nano-architecture. Herein, we designed nonstoichiometric Cu0.6Ni0.4Co2O4 nanowires for high performance lithium-ion storage. It is found that the specific capacity of Cu0.6Ni0.4Co2O4 nanowires remain 880 mAh g−1 after 50 cycles, exhibiting much better electrochemical performance than CuCo2O4 and NiCo2O4. After experiencing a large current charge and discharge state, the discharge capacity of Cu0.6Ni0.4Co2O4 nanowires recovers to 780 mAh g−1 at 50 mA g−1, which is ca. 88% of the initial capacity. The high electrochemical performance of Cu0.6Ni0.4Co2O4 nanowires is related to their better electronic conductivity and synergistic effect of metals. This work may provide a new strategy for the design of multicomponent transition metal oxides as anode materials for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document