scholarly journals Functionally Modified Polyolefin-Based Separators for Lithium-Sulfur Batteries: Progress and Prospects

2020 ◽  
Vol 8 ◽  
Author(s):  
Jiaojiao Li ◽  
Zhen Xiao ◽  
Anqi Chen ◽  
Wenkui Zhang ◽  
Dongmin Zhu ◽  
...  

The ever-growing demand for portable devices and electric vehicles are drawing widespread attention to advanced energy storage systems. Over the past few decades, lithium-sulfur batteries (LSBs) have vast potential to act as the next-generation of rechargeable power source due to their high theoretical specific energy, cost-effectiveness, and environmental benignity. However, insufficient sulfur utilization, inferior cyclability, and rate capability originating from the intrinsic insulating features of the sulfur and notorious polysulfide shuttle are major obstacles to fulfilling the industrialization of LSBs. In this respect, the introduction of a functional barrier layer coating on a separator has been verified as an effective strategy to overcome the aforementioned intractable problems. In this review, we focus on summarizing the current progress of the modified polyolefin-based separators (known as functional separators), including functional separator facing cathodes and functional separator facing anodes. According to the working mechanism, functional separator facing cathodes are divided into physical adsorption separators, chemical adsorption separators, catalytic conversion separators, and multifunctional separators. Meanwhile, functional separator facing anodes are classified into physical barrier separators, induced lithium growth separators, regulated lithium nucleation separators, and hybrid mechanism separators. Finally, the future perspective coupled with the practical utilization of functional separators in LSBs is proposed.

2018 ◽  
Vol 5 (4) ◽  
pp. 785-792 ◽  
Author(s):  
Jianmei Han ◽  
Baojuan Xi ◽  
Zhenyu Feng ◽  
Xiaojian Ma ◽  
Junhao Zhang ◽  
...  

A sulfur–hydrazine hydrate chemistry-based method is reported here to integrate the sulfur and N-doped reduced graphene oxide to obtain S@N-rGO composite with 76% sulfur. The as-obtained S@N-rGO composite displays a good rate capability and excellent stability.


2020 ◽  
Vol 8 (35) ◽  
pp. 18358-18366
Author(s):  
Chao Yue Zhang ◽  
Guo Wen Sun ◽  
Yun Fei Bai ◽  
Zhe Dai ◽  
Yi Rong Zhao ◽  
...  

A new type of vanadium sulfide (V2S3) was used for high-performance lithium–sulfur batteries.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1989 ◽  
Author(s):  
Wei Dong ◽  
Lingqiang Meng ◽  
Xiaodong Hong ◽  
Sizhe Liu ◽  
Ding Shen ◽  
...  

Lithium-sulfur batteries are very promising next-generation energy storage batteries due to their high theoretical specific capacity. However, the shuttle effect of lithium-sulfur batteries is one of the important bottlenecks that limits its rapid development. Herein, physical and chemical dual adsorption of lithium polysulfides are achieved by designing a novel framework structure consisting of MnO2, reduced graphene oxide (rGO), and carbon nanotubes (CNTs). The framework-structure composite of MnO2/rGO/CNTs is prepared by a simple hydrothermal method. The framework exhibits a uniform and abundant mesoporous structure (concentrating in ~12 nm). MnO2 is an α phase structure and the α-MnO2 also has a significant effect on the adsorption of lithium polysulfides. The rGO and CNTs provide a good physical adsorption interaction and good electronic conductivity for the dissolved polysulfides. As a result, the MnO2/rGO/CNTs/S cathode delivered a high initial capacity of 1201 mAh g−1 at 0.2 C. The average capacities were 916 mAh g−1, 736 mAh g−1, and 547 mAh g−1 at the current densities of 0.5 C, 1 C, and 2 C, respectively. In addition, when tested at 0.5 C, the MnO2/rGO/CNTs/S exhibited a high initial capacity of 1010 mAh g−1 and achieved 780 mAh g−1 after 200 cycles, with a low capacity decay rate of 0.11% per cycle. This framework-structure composite provides a simple way to improve the electrochemical performance of Li-S batteries.


2019 ◽  
Vol 34 (4) ◽  
pp. 600-607
Author(s):  
Yan Song ◽  
Jun Ren ◽  
Guoyan Wu ◽  
Wulin Zhang ◽  
Chengwei Zhang ◽  
...  

Abstract


2014 ◽  
Vol 2 (23) ◽  
pp. 8623-8627 ◽  
Author(s):  
Jiangxuan Song ◽  
Zhaoxin Yu ◽  
Terrence Xu ◽  
Shuru Chen ◽  
Hiesang Sohn ◽  
...  

Flexible freestanding sandwich-structured sulfur cathodes are developed for lithium–sulfur batteries, which exhibit excellent cycling stability and rate capability. A high areal capacity of ∼4 mA h cm−2 is also demonstrated based on this new cathode configuration.


2016 ◽  
Vol 4 (44) ◽  
pp. 17381-17393 ◽  
Author(s):  
Jing Xu ◽  
Dawei Su ◽  
Wenxue Zhang ◽  
Weizhai Bao ◽  
Guoxiu Wang

The combination of the physical adsorption of lithium polysulfides onto porous graphene and the chemical binding of polysulfides to N and S sites promotes reversible Li2S/polysulfide/S conversion, realizing high performance Li–S batteries with long cycle life and high-energy density.


2015 ◽  
Vol 3 (13) ◽  
pp. 7139-7144 ◽  
Author(s):  
Guanchao Wang ◽  
Yanqing Lai ◽  
Zhian Zhang ◽  
Jie Li ◽  
Zhiyong Zhang

A MCNT@PEG composite is designed to modify the commercial separator of Li-S cells. With the MCNT@PEG-modified separator, Li-S cells possess enhanced rate capability and cycle stability.


2020 ◽  
Vol 12 (10) ◽  
pp. 1441-1445
Author(s):  
Huihun Kim ◽  
Seon-Hwa Choe ◽  
Milan K. Sadan ◽  
Changhyeon Kim ◽  
Kwon-Koo Cho ◽  
...  

Sulfurized polyacrylonitrile (S-PAN) is one of the best materials for addressing some of the intrinsic drawbacks of lithium–sulfur batteries, such as the intrinsic insulating properties of sulfur and the shuttle phenomenon. Moreover, while S-PAN nanofiber composites are flexible, they still presents shortcomings, such as low rate capability, which is due to their semiconductor electrical conductivity. In this study, we prepared S-PAN webs with high electrical conductivity via electrospinning using conducting agents. Additionally, we analyzed the electrochemical properties of the S-PAN webs prepared using various conducting agents (acetylene black, Ketjen black, and multi-walled carbon nanotubes). The specific capacity of the S-PAN web prepared using acetylene black was 740 mAh g–1 at the charge rate of 5 C. The excellent rate capability of S-PAN prepared using acetylene black was attributed to its low electrical resistance and low charge transfer resistance.


2015 ◽  
Vol 1120-1121 ◽  
pp. 493-497
Author(s):  
Guang Hui Yuan ◽  
Jin Tao Bai

Using Orange Peels as Raw Material, a Stacking Structured Carbon Material has been Synthesized through Carbonizing and Activating Process. an Orange Peel Carbon/sulfur (OPC/S) Composite as a Cathode for Rechargeable Lithium/sulfur (Li/S) Batteries is Designed by Loading Sulfur into the Orange Peel Carbon (OPC) via Simple Impregnation and Heat Treatments. the OPC/S Composite Exhibits a High Discharge Capacity of 1100 mAh g−1 at 0.1 C, which is 23% Higher than that of Pristine Sulfur. Moreover, OPC/S Shows much Better Rate Capability and Excellent Cyclability. this Enhanced Electrochemical Performance could Be Attributed to the Thin Sheets and Irregular Wrinkled Surface of the OPC, which Act as a Conductor to Provide a Highly Conductivity and Short Li+ Diffusion Distance, as well as Absorbs Polysulfides.


Author(s):  
Hiroki Nara ◽  
Tokihiko Yokoshima ◽  
Hitoshi Mikuriya ◽  
Shingo Tsuda ◽  
Tetsuya Osaka

Various types of electroconductive additives were evaluated for high C-rate capability in an attempt to extend practical application of high-areal-capacity lithium–sulfur batteries that employ an aluminum-foam current collector. Carbon nanofibers (CNFs) were found to be the most effective additive, with the ability to attain a high-sulfur-loading of 40 mg cm−2. A CNF-containing cell exhibited gravimetric capacities of 1094 and 758 mAh gsulfur−1 (46.8 and 32.4 mAh cm−2) at 0.05 and 0.1 C-rate, respectively, in an ether-based electrolyte. Because a CNF-containing slurry exhibits low viscosity even at a high solid ratio, it could be filled into the aluminum foam. Additionally, a lithium–sulfur battery with high-sulfur-loading had an energy density of ~120 Wh kg−1, a value that was calculated from the weight of the components of the cathode, anode, current collectors, electrolyte, and separator. Assuming that the amount of electrolyte decreases and that the energy density of cells accumulate, a theoretical energy density of 522 Wh kg−1 was estimated. Moreover, it was found that even if a high-areal-capacity was achieved, the discharge capacity converged at a high C-rate, unless there was an improvement in ion diffusion in the bulk electrolyte. This is considered a limitation of sulfur cathodes with high-sulfur-loading.


Sign in / Sign up

Export Citation Format

Share Document