scholarly journals Mexican Onyx Waste as Active Material and Active Material’s Precursor for Conversion Anodes of Lithium Ion Batteries

2021 ◽  
Vol 9 ◽  
Author(s):  
Enrique Quiroga-González ◽  
Emma Morales-Merino

For the first time a limestone has been used as active material or active material’s precursor for electrodes of Li ion batteries. Limestones are very abundant, what is a condition for a sustainable development of energy storage devices. Mexican onyx has been used as a model of limestone in this work, mainly composed of calcite (calcium carbonate). Waste powder of this material from handcraft production was used, reducing costs. The material was carbonized and pyrolyzed, producing calcium oxide covered with carbon. Mexican onyx either treated or untreated works well as anode material for Li ion batteries, storing charges by conversion. Despite the grains of this material were as big as 50 μm, the material with no treatment showed a maximum Li storage capacity of 530.16 mAh/g at C/3.3, while the pyrolyzed one showed a maximum reversible capacity of 220 mAh/g at 1.37C and of 158 mAh/g at 5.48C, performance even better than the performance of graphite.

2021 ◽  
Vol 1044 ◽  
pp. 3-14
Author(s):  
Ahmad Jihad ◽  
Affiano Akbar Nur Pratama ◽  
Salsabila Ainun Nisa ◽  
Shofirul Sholikhatun Nisa ◽  
Cornelius Satria Yudha ◽  
...  

Li-ion batteries are one of the most popular energy storage devices widely applied to various kinds of equipment, such as mobile phones, medical and military equipment, etc. Therefore, due to its numerous advantages, especially on the NMC type, there is a predictable yearly increase in Li-ion batteries' demand. However, even though it is rechargeable, Li-ion batteries also have a usage time limit, thereby increasing the amount of waste disposed of in the environment. Therefore, this study aims to determine the optimum conditions and the potential and challenges from the waste Li-ion battery recycling process, which consists of pretreatment, metal extraction, and product preparation. Data were obtained by studying the literature related to Li-ion battery waste's recycling process, which was then compiled into a review. The results showed that the most optimum recycling process of Li-ion batteries consists of metal extraction by a leaching process that utilizes H2SO4 and H2O2 as leaching and reducing agents, respectively. Furthermore, it was proceeding with the manufacturing of a new Li-ion battery.


2019 ◽  
Vol 7 (16) ◽  
pp. 9748-9760 ◽  
Author(s):  
Linchun He ◽  
Chao Chen ◽  
Masashi Kotobuki ◽  
Feng Zheng ◽  
Henghui Zhou ◽  
...  

All-solid-state Li-ion batteries (ASSLiB) have been considered to be the next generation energy storage devices that can overcome safety issues and increase the energy density by replacing the organic electrolyte with inflammable solid electrolyte.


RSC Advances ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 1576-1582 ◽  
Author(s):  
Mikhail Miroshnikov ◽  
Keiko Kato ◽  
Ganguli Babu ◽  
Kizhmuri P. Divya ◽  
Leela Mohana Reddy Arava ◽  
...  

The burgeoning energy demands of an increasingly eco-conscious population have spurred the need for sustainable energy storage devices, and have called into question the viability of the popular lithium ion battery.


2020 ◽  
Vol 8 (9) ◽  
pp. 4950-4959 ◽  
Author(s):  
M. L. Divya ◽  
Subramanian Natarajan ◽  
Yun-Sung Lee ◽  
Vanchiappan Aravindan

Graphite is the dominant choice as negative electrode since the commercialization of lithium-ion batteries, which could bring about a significant increase in demand for the material owing to its usage in forthcoming graphite-based energy storage devices.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


2015 ◽  
Vol 15 (4) ◽  
pp. 301 ◽  
Author(s):  
Y.Y. Mamyrbayeva ◽  
R.E. Beissenov ◽  
M.A. Hobosyan ◽  
S.E. Kumekov ◽  
K.S. Martirosyan

<p>There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery  increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO<sub>2</sub> cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses.</p>


2016 ◽  
Vol 18 (29) ◽  
pp. 19531-19535 ◽  
Author(s):  
Chunshuang Yan ◽  
Gang Chen ◽  
Jingxue Sun ◽  
Xin Zhou ◽  
Chade Lv

C&N co-doped Co3O4 hollow nanofibres are prepared by combining the electrospinning technique and the hydrothermal method, which show a high reversible capacity and excellent cycling stability as anode materials for Li-ion batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2203
Author(s):  
Hong Wang ◽  
Yuejin Ma ◽  
Wenming Zhang

Nanoscale Fe3O4-Sn@CNFs was prepared by loading Fe3O4 and Sn nanoparticles onto CNFs synthesized via electrostatic spinning and subsequent thermal treatment by solvothermal reaction, and were used as anode materials for lithium-ion batteries. The prepared anode delivers an excellent reversible specific capacity of 1120 mAh·g−1 at a current density of 100 mA·g−1 at the 50th cycle. The recovery rate of the specific capacity (99%) proves the better cycle stability. Fe3O4 nanoparticles are uniformly dispersed on the surface of nanofibers with high density, effectively increasing the electrochemical reaction sites, and improving the electrochemical performance of the active material. The rate and cycling performance of the fabricated electrodes were significantly improved because of Sn and Fe3O4 loading on CNFs with high electrical conductivity and elasticity.


2020 ◽  
Author(s):  
Trinidad Mendez-Morales ◽  
Zhujie Li ◽  
Mathieu Salanne

Water-in-salts form a new family of electrolytes with properties distinct from the ones of conventional aqueous systems and ionic liquids. They are currently investigated for Li-ion batteries and supercapacitors applications, but to date most of the focus was put on the system based on the LiTFSI salt. Here we study the structure and the dynamics of a series of water-in-salts with different anions. They have a similar parent structure but they vary systematically through their symmetric/asymmetric feature and the length of the fluorocarbonated chains. The simulations allow to determine their tendency to nanosegregate, as well as their transport properties (viscosity, ionic conductivity, diffusion coefficients) and the amount of free water, providing useful data for potential applications in energy storage devices.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 827 ◽  
Author(s):  
Ying Liu ◽  
Xueying Li ◽  
Anupriya K. Haridas ◽  
Yuanzheng Sun ◽  
Jungwon Heo ◽  
...  

Lithium ion (Li-ion) batteries have been widely applied to portable electronic devices and hybrid vehicles. In order to further enhance performance, the search for advanced anode materials to meet the growing demand for high-performance Li-ion batteries is significant. Fe3C as an anode material can contribute more capacity than its theoretical one due to the pseudocapacity on the interface. However, the traditional synthetic methods need harsh conditions, such as high temperature and hazardous and expensive chemical precursors. In this study, a graphitic carbon encapsulated Fe/Fe3C (denoted as Fe/Fe3C@GC) composite was synthesized as an anode active material for high-performance lithium ion batteries by a simple and cost-effective approach through co-pyrolysis of biomass and iron precursor. The graphitic carbon shell formed by the carbonization of sawdust can improve the electrical conductivity and accommodate volume expansion during discharging. The porous microstructure of the shell can also provide increased active sites for the redox reactions. The in-situ-formed Fe/Fe3C nanoparticles show pseudocapacitive behavior that increases the capacity. The composite exhibits a high reversible capacity and excellent rate performance. The composite delivered a high initial discharge capacity of 1027 mAh g−1 at 45 mA g−1 and maintained a reversible capacity of 302 mAh g−1 at 200 mA g−1 after 200 cycles. Even at the high current density of 5000 mA g−1, the Fe/Fe3C@GC cell also shows a stable cycling performance. Therefore, Fe/Fe3C@GC composite is considered as one of the potential anode materials for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document