scholarly journals Studies of Li2Fe0.9M0.1SO Antiperovskite Materials for Lithium–Ion Batteries: The Role of Partial Fe2+ to M2+ Substitution

2021 ◽  
Vol 9 ◽  
Author(s):  
Mikhail V. Gorbunov ◽  
Salvatore Carocci ◽  
Ignacio G. Gonzalez Martinez ◽  
Volodymyr Baran ◽  
Daria Mikhailova

Cubic Li2Fe0.9M0.1SO antiperovskites with M–Co2+, or Mn2+ were successfully synthesized by a solid-state technique, and studied as cathode materials in Li-batteries. The influence of the Co, and Mn cation substitution of Fe in Li2FeSO on the resulting electrochemical performance was evaluated by galvanostatic cycling, while the reaction mechanism was explored by applying operando X-ray absorption and X-ray diffraction techniques using synchrotron radiation facilities. Even 10% Fe-substitution by these metals completely changes the structural behavior of the material upon Li-removal and insertion, in comparison to Li2FeSO. The Co-substitution significantly improves cyclability of the material at high current densities in comparison to the non-substituted material, reaching a specific capacity of 250 mAh/g at 1C current density. In contrast, the Mn-substitution leads to deterioration of the electrochemical performance because of the impeded kinetics, which may be caused by the appearance of a second isostructural phase due to formation of Jahn-Teller Mn3+ cations upon delithiation.

2010 ◽  
Vol 146-147 ◽  
pp. 1233-1237
Author(s):  
Bin Sun ◽  
Yi Feng Chen ◽  
Kai Xiong Xiang ◽  
Wen Qiang Gong ◽  
Han Chen

Li0.99Gd0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Gd3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methods. The electrochemical tests show Li0.99Gd 0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh.g-1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh.g-1 at 2 C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2 C.


MRS Advances ◽  
2018 ◽  
Vol 3 (14) ◽  
pp. 773-778 ◽  
Author(s):  
Lei Wang ◽  
Alison McCarthy ◽  
Kenneth J. Takeuchi ◽  
Esther S. Takeuchi ◽  
Amy C. Marschilok

ABSTRACTZnFe2O4 (ZFO) represents a promising anode material for lithium ion batteries, but there is still a lack of deep understanding of the fundamental reduction mechanism associated with this material. In this paper, the complete visualization of reduction/oxidation products irrespective of their crystallinity was achieved experimentally through a compilation of in situ X-ray diffraction, synchrotron based powder diffraction, and ex-situ X-ray absorption fine structure data. Complementary theoretical modelling study further shed light upon the fundamental understanding of the lithiation mechanism, especially at the early stage from ZnFe2O4 up to LixZnFe2O4 (x = 2).


2019 ◽  
Vol 9 (19) ◽  
pp. 4032 ◽  
Author(s):  
Luis Zuniga ◽  
Gabriel Gonzalez ◽  
Roberto Orrostieta Chavez ◽  
Jason C. Myers ◽  
Timothy P. Lodge ◽  
...  

We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solution containing PVP/iron (III) acetylacetonate/titanium (IV) butoxide/ethanol/acetic acid followed by oxidation at 200 °C in air and then carbonization at 550 °C under flowing argon. The morphology and structure of the composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). These ternary composite fiber anodes showed an improved electrochemical performance compared to the pristine TiO2/C and α-Fe2O3/C composite fiber electrodes. The α-Fe2O3/TiO2/C composite fibers also showed a superior cycling performance with a specific capacity of 340 mAh g−1 after 100 cycles at a current density of 100 mA g−1, compared to 61 mAh g−1 and 121 mAh g−1 for TiO2/C and α-Fe2O3/C composite electrodes, respectively. The improved electrochemical performance and the simple processing of these metal oxide/carbon composite fibers make them promising candidates for the next generation and cost-effective flexible binder-free anodes for LIBs.


2014 ◽  
Vol 636 ◽  
pp. 49-53
Author(s):  
Si Qi Wen ◽  
Liang Chao Gao ◽  
Jia Li Wang ◽  
Lei Zhang ◽  
Zhi Cheng Yang ◽  
...  

To improve the cycle performance of spinel LiMn2O4as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4(x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4has best electrochemical performance, 107.6 mAhg-1discharge capacity, 96.1% of the retention after 50 cycles.


2020 ◽  
Vol 20 (3) ◽  
pp. 1962-1967
Author(s):  
Zhen Liu ◽  
Wei Zhou ◽  
Guilin Zeng ◽  
Yuling Zhang ◽  
Zebin Wu ◽  
...  

Oroxylum as a traditional Chinese medicine, was used as a green and novel bio-template to synthesize tremella-like Li3V2(PO4)3/C composite (LVPC) cathode materials by adopting a facile immersion method. The microstructures were analyzed by X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties were investigated by galvanostatic charge–discharge experiments. The LVPC revealed specific capacity of 95 mAh·g-1 at 1 C rate within potential range of 3.0–4.3 V. After 100 cycles at 0.2 C, the retention of discharge capacity was 96%. The modified electrochemical performance is mainly resulted from the distinct tremella-like structure.


2020 ◽  
Vol 20 (5) ◽  
pp. 2911-2916
Author(s):  
Zhen Zhang ◽  
Xiao Chen ◽  
Guangxue Zhang ◽  
Chuanqi Feng

The MoO3/V2O5/C, MoO3/C and V2O5/C are synthesized by electrospinning combined with heat treatment. These samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermogravimetric analysis (TG) techniques. The results show that sample MoO3/V2O5/C is a composite composed from MoO3, V2O5 and carbon. It takes on morphology of the nanofibers with the diameter of 200~500 nm. The TG analysis result showed that the carbon content in the composite is about 40.63%. Electrochemical properties for these samples are studied. When current density is 0.2 A g−1, the MoO3/V2O5/C could retain the specific capacity of 737.6 mAh g−1 after 200 cycles and its coulomb efficiency is 92.99%, which proves that MoO3/V2O5/C has better electrochemical performance than that of MoO3/C and V2O5/C. The EIS and linear Warburg coefficient analysis results show that the MoO3/V2O5/C has larger Li+ diffusion coefficient and superior conductivity than those of MoO3/C or V2O5/C. So MoO3/V2O5/C is a promising anode material for lithium ion battery application.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050058
Author(s):  
Yuhua Huang ◽  
Weiwei Li ◽  
Bingchu Mei ◽  
Yu Yang ◽  
Zuodong Liu

In this paper, the effects of etching temperature and concentrations of hydrochloric acid (HCl) on the exfoliating process and the electrochemical performance of LIBs were systematically explored. The transformation from Ti3AlC2 to Ti3C2 was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The suitable conditions of preparing Ti3C2 MXene though HCl and lithium fluoride (LiF) were obtained. Besides, the in-situ oxidation conditions of Ti3C2 during the etching process were studied. The TiO2/Ti3C2 was beneficial to improve the specific capacity from 125[Formula: see text]mAh[Formula: see text]g[Formula: see text] to 150[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 1 C.


2016 ◽  
Vol 80 (2) ◽  
pp. 325-335 ◽  
Author(s):  
Lei Ding ◽  
Céline Darie ◽  
Claire V. Colin ◽  
Pierre Bordet

AbstractThe Cu0.8Mg1.2Si2O6 pyroxene has been synthesized using a soft chemistry method. Its crystal structure was determined from powder X-ray diffraction data. Cu0.8Mg1.2Si2O6 crystallizes with the lowclinopyroxene monoclinic structure (space group P21/c). The role of the Jahn-Teller-distorted Cu2+ cation on the stability of this strongly distorted structure is investigated. Cu2+ shows a strong preference for the M2 site, attributed to a better adaptation of its JT-distorted coordination polyhedron to this already distorted and more flexible site. Comparison with previously reported compounds indicates that increasing the Cu content enhances the M2 site distortion, eventually leading to symmetry lowering from orthorhombic Pbca to monoclinic P21/c. These observations bring new insight into the mechanisms of formation and chemical composition of pyroxene minerals in the presence of JT cations.


2016 ◽  
Vol 34 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Xiang Wei Kong ◽  
Rong Liang Zhang ◽  
Sheng Kui Zhong ◽  
Ling Wu

AbstractThree-dimensional NiO nanorods were synthesized as anode material by electrospinning method. X-ray diffraction results revealed that the product sintered at 400 °C had impure metallic nickel phase which, however, became pure NiO phase as the sintering temperature rose. Nevertheless, the nanorods sintered at 400, 500 and 600 °C had similar diameters (∼200 nm).The NiO nanorod material sintered at 500 °C was chip-shaped with a diameter of 200 nm and it exhibited a porous 3D structure. The nanorod sintered at 500 °C had the optimal electrochemical performance. Its discharge specific capacity was 1127 mAh·g−1 initially and remained as high as 400 mAh·g−1 at a current density of 55 mA·g−1 after 50 cycles.


Sign in / Sign up

Export Citation Format

Share Document