scholarly journals Mapping Relation of Leakage Currents of Polluted Insulators and Discharge Arc Area

2021 ◽  
Vol 9 ◽  
Author(s):  
Chunhua Fang ◽  
Yuning Tao ◽  
Jianguo Wang ◽  
Can Ding ◽  
Li Huang ◽  
...  

A fundamental parameter of polluted insulator online monitoring is the leakage current, which has already been shown to be well-related to the pollution discharge of insulators. In this article, in an effort to quantitatively reflect the discharge intensity and the discharge status by the leakage current, we carried out an experimental study on artificial pollution discharge of insulators. A high-speed photographic apparatus was utilized to capture the entire process of local arcs on a porcelain insulator surface, including the arc generation, the arc development, and the flashover, for which the associated leakage current of insulators was synchronously digitized. A comparative analysis of the relation between the two-dimensional discharge image and the leakage current waveform in the process of arc generation and development shows that if the arc area on the insulator surface is relatively small and the leakage current passes through zero, the arc might completely become extinct, whereas this phenomena will not occur if the arc area is larger. In addition, the amplitude of the discharge arc area is found to be roughly proportional to the square of leakage current over the range of leakage current amplitude from 0 to 150 mA. Our results can provide an important guidance for judgment of the discharge status and the discharge intensity on insulator surfaces using the leakage current of insulators.

Author(s):  
Yujia Liu ◽  
Sifan Peng ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

Abstract The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense. In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.


2019 ◽  
Vol 8 (4) ◽  
pp. 9487-9492

The outdoor insulator is commonly exposed to environmental pollution. The presence of water like raindrops and dew on the contaminant surface can lead to surface degradation due to leakage current. However, the physical process of this phenomenon is not well understood. Hence, in this study we develop a mathematical model of leakage current on the outdoor insulator surface using the Nernst Planck theory which accounts for the charge transport between the electrodes (negative and positive electrode) and charge generation mechanism. Meanwhile the electric field obeys Poisson’s equation. Method of Lines technique is used to solve the model numerically in which it converts the PDE into a system of ODEs by Finite Difference Approximations. The numerical simulation compares reasonably well with the experimental conduction current. The findings from the simulation shows that the conduction current is affected by the electric field distribution and charge concentration. The rise of the conduction current is due to the distribution of positive ion while the dominancy of electron attachment with neutral molecule and recombination with positive ions has caused a significant reduction of electron and increment of negative ions.


Author(s):  
Xintian Liu ◽  
Yang Qu ◽  
Xiaobing Yang ◽  
Yongfeng Shen

Background:: In the process of high-speed driving, the wheel hub is constantly subjected to the impact load from the ground. Therefore, it is important to estimate the fatigue life of the hub in the design and production process. Objective:: This paper introduces a method to study the fatigue life of car hub based on the road load collected from test site. Methods:: Based on interval analysis, the distribution characteristics of load spectrum are analyzed. The fatigue life estimation of one - dimensional and two - dimensional load spectra is compared by compiling load spectra. Results:: According to the S-N curve cluster and the one-dimensional program load spectrum, the estimated range fatigue life of the hub is 397,100 km to 529,700 km. For unsymmetrical cyclic loading, each level means and amplitude of load were obtained through the Goodman fatigue empirical formula, and then according to S-N curve clusters in the upper and lower curves and two-dimensional program load spectrum, estimates the fatigue life of wheel hub of the interval is 329900 km to 435200 km, than one-dimensional load spectrum fatigue life was reduced by 16.9% - 17.8%. Conclusion:: This paper lays a foundation for the prediction of fatigue life and the bench test of fatigue durability of auto parts subjected to complex and variable random loads. At the same time, the research method can also be used to estimate the fatigue life of other bearing parts or high-speed moving parts and assemblies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Florian Roessler ◽  
André Streek

Abstract In laser processing, the possible throughput is directly scaling with the available average laser power. To avoid unwanted thermal damage due to high pulse energy or heat accumulation during MHz-repetition rates, energy distribution over the workpiece is required. Polygon mirror scanners enable high deflection speeds and thus, a proper energy distribution within a short processing time. The requirements of laser micro processing with up to 10 kW average laser powers and high scan speeds up to 1000 m/s result in a 30 mm aperture two-dimensional polygon mirror scanner with a patented low-distortion mirror configuration. In combination with a field programmable gate array-based real-time logic, position-true high-accuracy laser switching is enabled for 2D, 2.5D, or 3D laser processing capable to drill holes in multi-pass ablation or engraving. A special developed real-time shifter module within the high-speed logic allows, in combination with external axis, the material processing on the fly and hence, processing of workpieces much larger than the scan field.


2021 ◽  
Vol 300 ◽  
pp. 124332
Author(s):  
Gongxun Deng ◽  
Wen Ma ◽  
Yong Peng ◽  
Shiming Wang ◽  
Song Yao ◽  
...  

2019 ◽  
Vol 28 (06) ◽  
pp. 1950106
Author(s):  
Qian Dong ◽  
Bing Li

The hardware-based dictionary compression is widely adopted for high speed requirement of real-time data processing. Hash function helps to manage large dictionary to improve compression ratio but is prone to collisions, so some phrases in match search result are not true matches. This paper presents a novel match search approach called dual chaining hash refining, which can improve the efficiency of match search. From the experimental results, our method showed obvious advantage in compression speed compared with other approach that utilizes single hash function described in the previous publications.


1996 ◽  
Vol 61 (6) ◽  
pp. 856-867 ◽  
Author(s):  
Oldřich Brůha ◽  
Ivan Fořt ◽  
Pavel Smolka ◽  
Milan Jahoda

The frequency of turbulent macroinstability occurrence was measured in liquids agitated in a cylindrical baffled vessel. As it has been proved by preceding experimental results of the authors, the stochastic quantity with frequency of occurrence of 10-1 to 100 s-1 is concerned. By suitable choosing the viscosity of liquids and frequency of impeller revolutins, the region of Reynolds mixing numbers was covered from the pure laminar up to fully developed turbulent regime. In addition to the equipment making it possible to record automatically the macroinstability occurrence, also the visualization method and videorecording were employed. It enabled us to describe in more detail the form of entire flow field in the agitated system and its behaviour in connection with the macroinstability occurrence. It follows from the experiments made that under turbulent regime of flow of agitated liquids the frequency of turbulent macroinstability occurrence is the same as the frequency of the primary circulation of agitated liquid.


Sign in / Sign up

Export Citation Format

Share Document