scholarly journals Study on Preparation of Oxygen Carrier Using Copper Slag as Precursor

2021 ◽  
Vol 9 ◽  
Author(s):  
Yan Feng ◽  
Qianhui Yang ◽  
Zongliang Zuo ◽  
Siyi Luo ◽  
Dongdong Ren ◽  
...  

Copper slag, an important by-product of the copper smelting process, is mainly composed of 2FeO SiO2, Fe3O4, and SiO2. Due to the sufficient metal oxides, copper slag is regard as a potential oxygen carrier (OC), which can be applied in chemical looping technology. This research proposed to use the granulated copper slag particles as precursor to produce oxygen carrier. Through this method, waste heat of the high-temperature slag can be fully recovered, eliminating the complicated copper slag pretreatment process. In this paper, the reactivity of granulated copper slag after redox calcination was studied by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM), the highest reactivity occurred at 1,000°C. In addition, the oxygen release and absorption performance of OC were tested in thermal-gravimetric (TG). According to theoretical calculations, the mass loss caused by oxygen release accounts for 70.57% of the total loss and the mass reached by 4.2% at 1,000°C in oxygen absorption experiment. The copper slag modified through calcining in redox condition was proved to be a promising oxygen carrier in chemical looping process. Furthermore, the performance research on OC also provided theoretical references for the operating paraments of OC circulating between air reactor and fuel reactor in practical chemical looping processes.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5394
Author(s):  
Anna Zylka ◽  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Kamil Idziak ◽  
Marcin Sosnowski ◽  
...  

This paper presents a 1.5D model of a fluidized bed chemical looping combustion (CLC) built with the use of a comprehensive simulator of fluidized and moving bed equipment (CeSFaMB) simulator. The model is capable of calculating the effect of gas velocity in the fuel reactor on the hydrodynamics of the fluidized bed and the kinetics of the CLC process. Mass of solids in re actors, solid circulating rates, particle residence time, and the number of particle cycles in the air and fuel reactor are considered within the study. Moreover, the presented model calculates essential emissions such as CO2, SOX, NOX, and O2. The model was successfully validated on experimental tests that were carried out on the Fluidized-Bed Chemical-Looping-Combustion of Solid-Fuels unit located at the Institute of Advanced Energy Technologies, Czestochowa University of Technology, Poland. The model’s validation showed that the maximum relative errors between simulations and experiment results do not exceed 10%. The CeSFaMB model is an optimum compromise among simulation accuracy, computational resources, and processing time.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract Chemical looping combustion (CLC) is an attractive technology to achieve inherent CO2 separation with low energy penalty. In CLC, the conventional one-step combustion process is replaced by two successive reactions in two reactors, a fuel reactor (FR) and an air reactor (AR). In addition to experimental techniques, computational fluid dynamics (CFD) is a powerful tool to simulate the flow and reaction characteristics in a CLC system. This review attempts to analyze and summarize the CFD simulations of CLC process. Various numerical approaches for prediction of CLC flow process are first introduced and compared. The simulations of CLC are presented for different types of reactors and fuels, and some key characteristics including flow regimes, combustion process, and gas-solid distributions are described in detail. The full-loop CLC simulations are then presented to reveal the coupling mechanisms of reactors in the whole system such as the gas leakage, solid circulation, redox reactions of the oxygen carrier, fuel conversion, etc. Examples of partial-loop CLC simulation are finally introduced to give a summary of different ways to simplify a CLC system by using appropriate boundary conditions.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Ronald W. Breault ◽  
Justin Weber ◽  
Doug Straub ◽  
Sam Bayham

The National Energy Technology Laboratory (NETL) has explored chemical looping in its 50 kWth facility using a number of oxygen carriers. In this work, the results for methane conversion in the fuel reactor with a hematite iron ore as the oxygen carrier are analyzed. The experimental results are compared to predictions using CPFD's barracuda computational fluid dynamics (CFD) code with kinetics derived from the analysis of fixed bed data. It has been found through analytical techniques from thermal gravimetric analysis data as well as the same fixed bed data that the kinetics for the methane–hematite reaction follows a nucleation and growth or Johnson–Mehl–Avrami (JMA) reaction mechanism. barracuda does not accept nucleation and growth kinetics; however, there is enough sufficient variability of the solids dependence within the software such that the nucleation and growth behavior can be mimicked. This paper presents the method to develop the pseudo-JMA kinetics for barracuda extracted from the fixed bed data and then applies these values to the fuel reactor data to compare the computational results to experimental data obtained from 50 kWth unit for validation. Finally, a fuel reactor design for near complete conversion is proposed.


2012 ◽  
Vol 26 (11) ◽  
pp. 6528-6539 ◽  
Author(s):  
Mehdi Arjmand ◽  
Martin Keller ◽  
Henrik Leion ◽  
Tobias Mattisson ◽  
Anders Lyngfelt

Author(s):  
Baosheng Jin ◽  
Rui Xiao ◽  
Zhongyi Deng ◽  
Qilei Song

To concentrate CO2 in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO2 and H2O, while the outlet gas stream from the air reactor contains only N2 and some unused O2. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation.Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO4+ H2) is developed by means of the commercial code FLUENT and the effects of partial pressure of H2 (concentration of H2) on chemical looping combustion performance are also studied. The results show that the concentration of H2 could enhance the CLC performance.


Energy ◽  
2021 ◽  
pp. 120448
Author(s):  
Shiwen Fang ◽  
Zhengbing Deng ◽  
Yan Lin ◽  
Zhen Huang ◽  
Lixing Ding ◽  
...  

Author(s):  
Atal B. Harichandan ◽  
Tariq Shamim

The hydrodynamics of fuel reactor in a chemical looping combustion (CLC) system has been analyzed by using a multiphase CFD-based model with solid-gas interactions and chemical reactions. In this paper, the fuel reactors of two CLC systems are numerically simulated independently by using hydrogen with calcium sulfide as oxygen carrier, and methane with nickel as oxygen carrier in similar conditions. Kinetic theory of granular flow has been adopted. Conservation of mass, momentum and species equations, and reaction kinetics of oxygen carriers are used for the numerical calculation. The present results obtained are in good agreement with the experimental and numerical results available in open literature. The bubble hydrodynamics in both the fuel reactors are analyzed. The salient features of bubble formation, rise and burst are prominent in hydrogen-fueled reactor as compared to methane-fueled reactor. The fuel conversion rate is found to be larger in the case of hydrogen-fueled reactor.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 701
Author(s):  
Liaoting Pan ◽  
Deqing Zhu ◽  
Zhengqi Guo ◽  
Jian Pan

Generally, the Cu-bearing direct reduction iron powder (CBDRI) obtained from a direct reduction-magnetic separation process of waste copper slag contains a high content of impurities and cannot be directly used to produce Cu-bearing special steel. In this paper, further smelting treatment of CBDRI was conducted to remove its impurities (such as S, SiO2, Al2O3, CaO and MgO) and acquire a high-quality Fe–Cu master alloy. The results show that the Fe–Cu master alloy, assaying 95.9% Fe, 1.4% Cu and minor impurities, can be obtained from the smelting process at 1550 °C for 40 min with 1.0 basicity. Meanwhile, the corresponding iron and copper recoveries are 98.6% and 97.2%, respectively. Theoretical calculations and experimental results show that appropriate basicity (0.9~1.1) is beneficial for the recovery of Fe and Cu from a thermodynamic viewpoint due to the excellent fluidity of the slag in this basicity range. Moreover, the mechanism of desulfurization was revealed by calculating the sulfide capacity and the desulfurization reaction kinetics. Increasing the binary basicity of the slag benefits both the sulfide capacity and diffusion coefficient of the sulfur in the molten slag, resulting in higher desulfurization efficiency and lower S content in the master alloy.


2014 ◽  
Vol 908 ◽  
pp. 349-352 ◽  
Author(s):  
Long Fei Wang ◽  
Shu Zhong Wang ◽  
Ming Luo

Chemical looping hydrogen (CLH) has become a promising technology for hydrogen production with inherent separation of carbon dioxide. Aspen Plus was used to simulate a two-stage fuel reactor CLH process of coal as solid fuel. Simulation results show that the two-stage reactor can fully convert the fuel and generate the maximum Fe0.947O component to react with the steam in steam reactor. The optimum OC/coal molar ratio in the two-stage fuel reactor was 2.8. The CO2 fraction of the flue gas in the fuel reactor reached 99% when the vapor was condensed at the temperature of 950 °C. The fraction of dry-based H2 in the steam reactor was nearly 100% when the steam reactor temperature was 700 °C and the steam/oxygen carrier molar ratio was 0.48.


Author(s):  
Atal Bihari Harichandan ◽  
Tariq Shamim

The hydrodynamics of a fuel reactor in a chemical looping combustion (CLC) system is analyzed by using a multiphase two-dimensional computational fluid dynamics (CFD) model that involves solid–gas interactions and chemical reactions. The study compares the fuel reactors of two CLC systems numerically by using hydrogen with calcium sulfide as an oxygen carrier, and methane with nickel as an oxygen carrier in similar conditions. Kinetic theory of granular flow has been adopted. The model considers the conservation equations of mass, momentum and species, and reaction kinetics of oxygen carriers. The results obtained are in good agreement with the experimental and numerical results available in open literature. The bubble hydrodynamics in both the fuel reactors are analyzed. The salient features of the bubble formation, rise, and burst are more prominent in the hydrogen-fueled reactor as compared to the methane-fueled reactor. The fuel conversion rate is found to be larger for the hydrogen-fueled reactor.


Sign in / Sign up

Export Citation Format

Share Document