scholarly journals Techno Commercial Analysis of Liquefied Petroleum Gas Recovery From Natural Gas Using Aspen HYSYS

2021 ◽  
Vol 9 ◽  
Author(s):  
Usman Ali ◽  
Muhammad Zafar ◽  
Ashfaq Ahmed ◽  
Hafiz Kamran Zaman ◽  
Abdul Razzaq ◽  
...  

Liquefied petroleum gas is an alternative, relatively clean and a supreme source of energy, which is being used as a key component in the global energy supply. The international trade agreements and the chemical and non-chemical demand of liquefied petroleum gas with the increase in the world’s population have brought its production from the processing of natural gas to the limelight. During its processing, a variety of different components are extracted from it, including methane and ethane which remains in the bulk as natural gas. The objective of this research work is to find the capability of investigating the liquefied petroleum gas recovery performance to make the process economical by saving the processing cost and energy. The novelty of this work is to deal with the design and simulation of a liquefied petroleum gas plant using Aspen HYSYS. To make this process energy efficient and economical, different schemes of process alternatives were applied by reducing the sizes of the exchanger and other pieces of equipment. Three cases are studied in which feed is precooled by rerouting the stream and/or by repositioning of the chiller for the recovery of liquefied petroleum gas from natural gas by analyzing their cost and process parameters. The modelling and simulation base case and three different case studies are realized in Aspen HYSYS. It has been observed that case study 2 results in about 10% increase in LPG production where the chiller is repositioned in the separation section of the LPG production flowsheet. Case study 3 shows a maximum decrease in hot side utilities in the flowsheet of about 20% while 10 and 14% decreases are observed for case studies 1 and 2, respectively. Furthermore, economic analysis indicates about 18 and 22% in the capital cost for case studies 2 and 3, respectively, due to the lower size of process units. The outcome of this investigation is to present plenty of suggestions to improve the process efficiency and minimize the requirement to over design the plant components.

2021 ◽  
Author(s):  
Adel Mohsin ◽  
Abdul Salam Abd ◽  
Ahmad Abushaikha

Abstract Condensate banking in natural gas reservoirs can hinder the productivity of production wells dramatically due to the multiphase flow behaviour around the wellbore. This phenomenon takes place when the reservoir pressure drops below the dew point pressure. In this work, we model this occurrence and investigate how the injection of CO2 can enhance the well productivity using novel discretization and linearization schemes such as mimetic finite difference and operator-based linearization from an in-house built compositional reservoir simulator. The injection of CO2 as an enhanced recovery technique is chosen to assess its value as a potential remedy to reduce carbon emissions associated with natural gas production. First, we model a base case with a single producer where we show the deposition of condensate banking around the well and the decline of pressure and production with time. In another case, we inject CO2 into the reservoir as an enhanced gas recovery mechanism. In both cases, we use fully tensor permeability and unstructured tetrahedral grids using mimetic finite difference (MFD) method. The results of the simulation show that the gas and condensate production rates drop after a certain production plateau, specifically the drop in the condensate rate by up to 46%. The introduction of a CO2 injector yields a positive impact on the productivity and pressure decline of the well, delaying the plateau by up to 1.5 years. It also improves the productivity index by above 35% on both the gas and condensate performance, thus reducing production rate loss on both gas and condensate by over 8% and the pressure, while in terms of pressure and drawdown, an improvement of 2.9 to 19.6% is observed per year.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1732 ◽  
Author(s):  
Muhammad Abdul Qyyum ◽  
Muhammad Yasin ◽  
Alam Nawaz ◽  
Tianbiao He ◽  
Wahid Ali ◽  
...  

Propane-Precooled Mixed Refrigerant (C3MR) and Single Mixed Refrigerant (SMR) processes are considered as optimal choices for onshore and offshore natural gas liquefaction, respectively. However, from thermodynamics point of view, these processes are still far away from their maximum achievable energy efficiency due to nonoptimal execution of the design variables. Therefore, Liquefied Natural Gas (LNG) production is considered as one of the energy-intensive cryogenic industries. In this context, this study examines a single-solution-based Vortex Search (VS) approach to find the optimal design variables corresponding to minimal energy consumption for LNG processes, i.e., C3MR and SMR. The LNG processes are simulated using Aspen Hysys and then linked with VS algorithm, which is coded in MATLAB. The results indicated that the SMR process is a potential process for offshore sites that can liquefy natural gas with 16.1% less energy consumption compared with the published base case. Whereas, for onshore LNG production, the energy consumption for the C3MR process is reduced up to 27.8% when compared with the previously published base case. The optimal designs of the SMR and C3MR processes are also found via distinctive well-established optimization approaches (i.e., genetic algorithm and particle swarm optimization) and their performance is compared with that of the VS methodology. The authors believe this work will greatly help the process engineers overcome the challenges relating to the energy efficiency of LNG industry, as well as other mixed refrigerant-based cryogenic processes.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012038
Author(s):  
Abdulqader Bin Sahl ◽  
Tharindu Siyambalapitiya ◽  
Ahmed Mahmoud ◽  
Jaka Sunarso

Abstract This work presents a two-step method to reduce CO2 concentration of sweet natural gas product from amine sweetening plant via amine blending (Step 1) followed by minor process modification (Step 2). In Step 1, an industrial natural gas sweetening plant was simulated using Aspen HYSYS and the simulation results were validated against the plant data. Afterwards, different blends of methyl diethanolamine and monoethanolamine (MDEA-MEA) and methyl diethanolamine and diethanolamine (MDEA-DEA) were investigated. Then the optimum amine blend of 28 wt.% MDEA and 10 wt.% MEA was reported. The optimum amine blend achieved a significant reduction in CO2 concentration of sweet natural gas of 99.9% compared to the base case (plant data). In Step 2, two types of amine stream splits, i.e., lean amine stream split and semi-lean amine stream split were studied. The study covered split stream amount, absorber recycle stage, and regenerator stage withdrawal. Both types of stream splits attained a significant reduction in CO2 concentration of sweet natural gas product and amine circulation rate compared to Step 1. However, the semi-lean amine stream split was superior to lean amine split with 69.1% and 63.6% reduction in CO2 concentration of sweet natural gas and lean amine circulation rate, respectively.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Samir Meramo ◽  
Ángel Darío González-Delgado ◽  
Sumesh Sukumara ◽  
William Stive Fajardo ◽  
Jeffrey León-Pulido

Enhancing the biochemical supply chain towards sustainable development requires more efforts to boost technology innovation at early design phases and avoid delays in industrial biotechnology growth. Such a transformation requires a comprehensive step-wise procedure to guide bioprocess development from laboratory protocols to commercialization. This study introduces a process design framework to guide research and development (R&D) through this journey, bearing in mind the particular challenges of bioprocess modeling. The method combines sustainability assessment and process optimization based on process efficiency indicators, technical indicators, Life Cycle Assessment (LCA), and process optimization via Water Regeneration Networks (WRN). Since many bioprocesses remain at low Technology Readiness Levels (TRLs), the process simulation module was examined in detail to account for uncertainties, providing strategies for successful guidance. The sustainability assessment was performed using the geometric mean-based sustainability footprint metric. A case study based on Chitosan production from shrimp exoskeletons was evaluated to demonstrate the method’s applicability and its advantages in product optimization. An optimized scenario was generated through a WRN to improve water management, then compared with the case study. The results confirm the existence of a possible configuration with better sustainability performance for the optimized case with a sustainability footprint of 0.33, compared with the performance of the base case (1.00).


Author(s):  
Erwan Auburtin ◽  
Eric Morilhat ◽  
Stéphane Paquet ◽  
Abdeslam Raissi ◽  
Ewoud van Haaften ◽  
...  

Abstract Prelude Floating Liquefied Natural Gas (FLNG) facility reached a significant milestone in June 2018 when gas was introduced onboard for the first time as part of the facility startup process, loaded from an LNG carrier moored in side-by-side (SBS) configuration. This first offshore LNG SBS operation allowed Prelude’s utilities to switch from running on diesel to running on gas. SBS mooring is the base case configuration for of floading both LNG and Liquefied Petroleum Gas (LPG) into product carriers using Marine Loading Arms (MLA) once the Prelude FLNG facility is fully operational. These complex and weather sensitive operations are expected to take place on a weekly basis. This means critical decisions about weather-window and timing should be supported as much as possible by predictive analysis and modelling of environment forecasts to reduce the risks. Prelude Floating Liquefied Natural Gas (FLNG) is designed to offload Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) to carrier vessels moored in a side-by-side (SBS) configuration, using Marine Loading Arms (MLA) technology. For onshore terminals or small/medium FLNG, the traditional design of MLA (Double Counterweight Marine Arm – DCMA), featuring a vertical riser, can be used. However due to the exceptional freeboard of Prelude a new type of MLA was designed, namely the Offshore Loading Arm Footless (OLAF), without vertical riser in order to reach the LNG or LPG manifolds located as far as about 16 meters below the MLA base. Thanks to the OLAF design, the length and weight of the articulated MLA sections is reduced in comparison with conventional DCMA, and so are the dynamic loads applied by the MLA on the vessel manifold, which was mandatory to remain below the acceptable stress limit of standard LNG/LPG carrier manifolds. OLAF employs the field proven targeting system (TS) allowing the connection and disconnection of the MLA to the vessel manifold in dynamic conditions. This paper describes the assumptions and process to design and validate this new system — in terms of overall geometry and structural design, while verifying project feasibility, aiming at a reliable design of all components and minimizing the risks during operations. The key challenges and lessons learnt are also discussed. This innovative type of MLA had to be thoroughly designed and tested before being manufactured and assembled on the FLNG. The innovation management was also coupled with the additional challenge imposed by the expected highly dynamic conditions of relative motion between vessels that were never encountered for such systems in the past. MLA were designed with the objective to cover the operable envelope induced by berthing, mooring and relative motion criteria, so that it should not become an additional criterion in general. Since such an envelope is larger for this offshore application compared to sheltered terminals, this objective was particularly challenging but could be met thanks to the OLAF design. The SBS hydrodynamic numerical model is based on potential theory and includes multi-body coupling, non-linear mooring characteristics and coupling with sloshing. This model was calibrated using wave basin tests with a good agreement, and was used to determine the maximum operable environments and associated MLA envelope, using a 39-year hindcast for various LNG carriers and considering a scenario with different criteria and loading conditions. More than 100,000 time-domain simulations were required to evaluate non-linear quantities on a reduced set of environment ‘bins’. The new OLAF-type MLA was developed using these hydrodynamic simulations. Specific processes — based on spectral screening and selection using relevant criteria — were used to identify and select, in a systematic way, the designing load cases for connecting, connected, and emergency disconnection cases, while complying with the maximum allowable loads of conventional LNG and LPG carrier manifolds. An instrumented 1:4 OLAF scale model was built and tested with 6 degrees of freedom hexapods reproducing the motions on both sides of the OLAF which enabled us to confirm a 10% accuracy of the numerical studies results. The actual OLAF were dynamically tested with a full scale motion simulator before shipment to the yard for installation. The successful first operations were performed safely and confirmed the validity of the design. Measurements are now collected onboard Prelude to verify the design and when possible improve the accuracy of numerical modelling.


2020 ◽  
Vol 997 ◽  
pp. 103-110
Author(s):  
Muhammad Babar ◽  
Mohamad Azmi Bustam ◽  
Abulhassan Ali ◽  
Abdulhalim Shah Maulud

The presence of high CO2 content in natural gas reservoirs is one of the significant threats to the environment. Cryogenic CO2 capture technology is amongst the emerging technologies used for natural gas purification before customer use. In this research work, the binary CO2-CH4 mixture having 75% CO2 content is studied. Aspen Hysys simulator with Peng Robinson property package is used for the prediction of phase equilibrium data for the binary mixture. The data obtained through the Aspen Hysys simulator is optimized for the S-V two-phase region for maximum CO2 capture. Response surface methodology is used for the optimization of the predicted data. Optimization of the pressure and temperature conditions is done to obtain maximum CH4 in the top stream and minimum CO2 with minimum energy requirement. In this research work, the pressure and temperature ranges selected from the predicted phase equilibrium data for the optimization are 1 to 20 bar and-65 to-150 °C respectively. At atmospheric pressure and-123.50 °C, the desirability value is maximum, which is 0.843. under these conditions, the CO2 and CH4 in the top product stream are 1070.72 Kg/hr and 152.04 Kg/hr respectively with an energy requirement of 2.087 GJ/hr.


2019 ◽  
Vol 14 (2) ◽  
pp. e2292
Author(s):  
Walaa M. Shehata ◽  
Ahmed A. Bhran ◽  
Abeer M. Shoaib ◽  
Ashour A. Ibrahim ◽  
Fatma K. Gad

Natural Gas is More Efficient than Other Forms of Fossil Fuel. Natural gas produces more energy than any of the fossil fuels. Although the primary use of natural gas is as a fuel, it is also a source of hydrocarbons for petrochemical feedstocks and a major source of elemental sulfur, an important industrial chemical. The process simulation and optimization of natural gas dehydration process including mono ethylene glycol (MEG) injection and its regeneration process is studied in this research work. This study also carried out the operation parameters and optimization. The simulation is carried out using Aspen-HYSYS. The effect of replacement MEG by DEG and influence of replacement of Chiller by a turbo expander refrigeration technique on the DPCU operation was studied. The result obtained for optimum parameters like inlet pressure and temperature of the LTS are studied and comparing chiller and expander to maximize NGL are presented. The study recommends to use the expander instead of the chiller. The the economic evaluation of the proposed modification is presented in this study.


Sign in / Sign up

Export Citation Format

Share Document