scholarly journals Response of Soil Respiration and Its Components to Precipitation Exclusion in Vitex negundo Var. Heterophylla Shrubland of the Middle Taihang Mountain in North China

2021 ◽  
Vol 9 ◽  
Author(s):  
Huitao Shen ◽  
Lingkai Zhang ◽  
Henan Meng ◽  
Zhenhua Zheng ◽  
Yanxia Zhao ◽  
...  

Assessing the response of soil heterotrophic and autotrophic respiration to climate change is critical for forecasting terrestrial carbon cycle behavior in the future. In the present study, we conducted a drought experiment in Vitexnegundo var. heterophylla shrub ecosystem of the Middle Taihang Mountain. Three precipitation manipulation treatments (natural conditions/ambient precipitation (CK), reduced precipitation by 30% (PE30), and reduced precipitation by 60% (PE60)) were used to study the impact of different levels of precipitation exclusion on total soil respiration (Rs) and its heterotrophic (Rh) and autotrophic (Ra) components. Our results showed that the rates of Rs and its components were significantly decreased under the precipitation exclusion treatments. The proportion of Rh in Rs reduced from 72.6% for CK to 71.9% under PE60. The annual cumulative C fluxes of Rs decreased by 47.8 g C m−2 in PE30 and 106.0 g C m−2 in PE60, respectively. An exponential relationship was observed between the rate of each soil respiration component and soil temperature in all treatments ( p < 0.01). Moreover, each soil respiration component rate was better represented by a quadratic model which included soil moisture ( p < 0.01). However, including both of soil temperature and soil moisture did not explain more variation in soil respiration components compared than the regression model with soil moisture only. In addition, excluding precipitation increased the temperature sensitivity (Q10 values) of Rs and its Ra and Rh components compared to the control. Collectively, our findings suggest that increased drought will inhibit the release of carbon from the soil to the atmosphere, and will likely decrease the contribution of Rh to Rs in this semiarid shrubland ecosystem.

2013 ◽  
Vol 10 (6) ◽  
pp. 9213-9242 ◽  
Author(s):  
B. Wang ◽  
T. S. Zha ◽  
X. Jia ◽  
B. Wu ◽  
Y. Q. Zhang ◽  
...  

Abstract. The response of soil respiration (Rs) to soil temperature and moisture have been well documented in forests, but data and information from desert shrub ecosystems are limited. Soil CO2 efflux from a desert shrub ecosystem was measured continuously with automated chambers in Ningxia, northwest China, from June to October 2012. The responses of Rs to Ts was strongly affected diurnally by soil moisture, with the diel variation in Rs being strongly related to 10 cm soil temperature (Ts) at moderate and high soil volumetric water content (VWC), but less related to Ts at low VWC. Ts typically lagged Rs by 3–4 h, however, the lag time varied in relation to VWC, with increased lag times at low VWC. Over the seasonal cycle, daily mean Rs was positively correlated with Ts when VWC exceeded 0.08 m3 m−3, but became decoupled from Ts when VWC dropped below this threshold. The annual temperature sensitivity of Rs (Q10) was 1.5. The short-term sensitivity of Rs to Ts, computed using three-day windows, varied significantly over the seasonal cycle; the short-term Q10 was negatively correlated with Ts and positively correlated with VWC. These results suggest the potential for a negative feedback to climate warming in desert ecosystems, related to the impact of low soil moisture on Rs. The results highlight the biological causes of diel hysteresis between Rs and Ts and the need for carbon cycle models to account for the interacting effects of Ts and VWC as joint determinants of Rs in desert ecosystem.


2011 ◽  
Vol 54 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Mai Kukumägi ◽  
Veiko Uri ◽  
Olevi Kull

Abstract. Soil respiration resulting from microbial and root respiration is a major component of the forest carbon cycle. The response of soil respiration to varying environmental factors (soil temperature and soil moisture) was studied in a Norway spruce chronosequence composed of four age classes (4, 27, 36, and 84 year old) on Gleyic Podzol. Soil respiration was measured monthly with closed dynamic chamber system, soil temperature and soil moisture were measured simultaneously. Mean soil respiration rate averaged over three years was 3.3 μmol CO2 m-2s-1, ranging from 0.6 to 5.4 μmol CO2 m-2s-1, with the maximum occurring in August and the minimum in December. Stand age had a significant effect on soil respiration: the highest respiration rate was found in 27-year-old stand. Over three years an exponential relationship between soil respiration and soil temperature accounted for 68-81% of the seasonal variation, Q10 (the factor by which the respiration rate differs for a temperature interval of 10 °C) for the individual stands ranged between 4.4 and 5.4. The influence of soil moisture content on soil respiration was weak and revealed in dry conditions only. The results of this study can be used to help understand and predict the effect of harvest on soil respiration and how the respiration might respond to changing climate conditions.


2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


Nematology ◽  
2015 ◽  
Vol 17 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Hugues Baimey ◽  
Lionel Zadji ◽  
Leonard Afouda ◽  
Maurice Moens ◽  
Wilfrida Decraemer

The influence of three pesticides on the viability and infectivity of four Beninese isolates of entomopathogenic nematodes (EPN), Heterorhabditis indica Ayogbe1, H. sonorensis Azohoue2, H. sonorensis Ze3, and Steinernema sp. Bembereke, was determined. The impact of both soil temperature and soil moisture on the virulence of these EPN to Trinervitermes occidentalis was investigated in laboratory assays. The effect of EPN-infected Galleria mellonella larvae on underground populations of Macrotermes bellicosus was also examined. All tested Heterorhabditis species were more tolerant to glyphosate and fipronil than the Steinernema species. Heterorhabditis sonorensis Azohoue2, showed the best results with 63.2% termite mortality at a soil temperature of 35°C. The increase of soil moisture to 20% (w/w) did not negatively influence the virulence of tested EPN. The underground populations of 71% or 60% treated nests were controlled by H. sonorensis Azohoue2- or H. indica Ayogbe1-infected G. mellonella larvae, respectively.


2018 ◽  
Vol 15 (7) ◽  
pp. 2007-2019 ◽  
Author(s):  
Ping Yue ◽  
Xiaoqing Cui ◽  
Yanming Gong ◽  
Kaihui Li ◽  
Keith Goulding ◽  
...  

Abstract. Soil respiration (Rs) is the most important source of carbon dioxide emissions from soil to atmosphere. However, it is unclear what the interactive response of Rs would be to environmental changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique temperate desert ecosystems. To investigate this an in situ field experiment was conducted in the Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results showed that precipitation and N deposition significantly increased Rs, but warming decreased Rs, except in extreme precipitation events, which was mainly through its impact on the variation of soil moisture at 5 cm depth. In addition, the interactive response of Rs to combinations of the factors was much less than that of any single-factor, and the main response was a positive effect, except for the response from the interaction of increased precipitation and high N deposition (60 kg N ha−1 yr−1). Although Rs was found to show a unimodal change pattern with the variation of soil moisture, soil temperature and soil NH4+-N content, and it was significantly positively correlated to soil dissolved organic carbon (DOC) and pH, a structural equation model found that soil temperature was the most important controlling factor. Those results indicated that Rs was mainly interactively controlled by the soil multi-environmental factors and soil nutrients, and was very sensitive to elevated precipitation, N deposition and warming. However, the interactions of multiple factors largely reduced between-year variation of Rs more than any single-factor, suggesting that the carbon cycle in temperate deserts could be profoundly influenced by positive carbon–climate feedback.


2017 ◽  
Vol 63 (No. 6) ◽  
pp. 257-263 ◽  
Author(s):  
Faber Florian ◽  
Wachter Elisabeth ◽  
Zaller Johann G

Inter-rows in vineyards are commonly tilled in order to control weeds and/or to conserve water. While impacts of tillage on earthworms are well studied in arable systems, very little is known from vineyards. In an experimental vineyard, the impact of four reduced tillage methods on earthworms was examined: rotary hoeing, rotary harrowing, grubbing and no tillage. According to an erosion prevention programme, tillage was applied every other inter-row only while alternating rows retained vegetated. Earthworms were extracted from the treated inter-rows 10, 36, 162 and 188 days after tillage. Across dates, tillage methods had no effect on overall earthworm densities or biomass. Considering each sampling date separately, earthworm densities were affected only at day 36 after tillage leading to lower densities under rotary hoeing (150.7 ± 42.5 worms/m<sup>2</sup>) and no tillage (117.3 ± 24.8 worms/m<sup>2</sup>) than under rotary harrowing (340.0 ± 87.4 worms/m<sup>2</sup>) and grubbing (242.7 ± 43.9 worms/m<sup>2</sup>). Time since tillage significantly increased earthworm densities or biomass, and affected soil moisture and temperature. Across sampling dates, earthworm densities correlated positively with soil moisture and negatively with soil temperature; individual earthworm mass increased with increasing time since tillage. It was concluded that reduced tillage in vineyards has little impact on earthworms when applied in spring under dry soil conditions.


2020 ◽  
Author(s):  
Min Chen ◽  
Xiaoyang Chen ◽  
Zhiyong Hu ◽  
Tingyu Fan ◽  
Shiwen Zhang ◽  
...  

Abstract An accurate assessment of root respiration in mine reclaimed soil is important for effectively evaluating mining area ecosystem. This study investigated dynamic changes in root respiration and contribution of root respiration to total soil respiration (Rr/Rt ratio) during the non-growth season in mine reclaimed soil with different covering soil thicknesses. According to covering soil thicknesses, the study area was divided into four sites: 10-25 cm (site A), 25-45 cm (site B), 45-55 cm (site C) and 55-65 cm (site D). From November 2017 to April 2018 (except February in 2018), the soil respiration, root respiration, temperature at 5 cm, water content and root biomass were measured. The results showed that soil temperature and root respiration exhibited similar diurnal and monthly variations. The root respiration was strongly influenced by soil temperature during the non-growing season, which showed an exponential and positive relationship with soil temperature (P<0.001). The root respiration varied with the covering soil thickness and was the greatest with the covering soil thickness at 25–45 cm. The Rr/Rt ratio also exhibited monthly variations. During the non-growth season, the mean value of the Rr/Rt ratio were 51.15% in mine reclaimed soil. The study indicated that root respiration was the primary source of soil respiration and important to estimate the potential of emission of soil CO 2 at regional scale in mine reclaimed soil.


2009 ◽  
Vol 6 (3) ◽  
pp. 6147-6177 ◽  
Author(s):  
F. B. Zanchi ◽  
H. R. da Rocha ◽  
H. C. de Freitas ◽  
B. Kruijt ◽  
M. J. Waterloo ◽  
...  

Abstract. Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests, although in situ measurements have only been poorly reported and the dependence of soil moisture and soil temperature also weakly understood. This work investigates the temporal variability of soil respiration using field measurements, which also included soil moisture, soil temperature and litterfall, from April 2003 to January 2004, in a southwest Brazilian tropical rainforest near Ji-Paraná, Rondônia. The experimental design deployed five automatic (static, semi-opened) soil chambers connected to an infra-red CO2 gas analyzer. The mean half-hourly soil respiration showed a large scattering from 0.6 to 18.9 μmol CO2 m−2 s−1 and the average was 8.0±3.4 μmol CO2 m−2 s−1. Soil respiration varied seasonally, being lower in the dry season and higher in the wet season, which generally responded positively to the variation of soil moisture and temperature year round. The peak was reached in the dry-to-wet season transition (September), this coincided with increasing sunlight, evapotranspiration and ecosystem productivity. Litterfall processes contributed to meet very favorable conditions for biomass decomposition in early wet season, especially the fresh litter on the forest floor accumulated during the dry season. We attempted to fit three models with the data: the exponential Q10 model, the Reichstein model, and the log-soil moisture model. The models do not contradict the scattering of observations, but poorly explain the variance of the half-hourly data, which is improved when the lag-time days averaging is longer. The observations suggested an optimum range of soil moisture, between 0.115


Sign in / Sign up

Export Citation Format

Share Document