scholarly journals Cultivation of Chlorella vulgaris in Membrane-Treated Industrial Distillery Wastewater: Growth and Wastewater Treatment

2021 ◽  
Vol 9 ◽  
Author(s):  
Feng Li ◽  
David Kwame Amenorfenyo ◽  
Yulei Zhang ◽  
Ning Zhang ◽  
Changling Li ◽  
...  

The alcohol industry discharges large quantities of wastewater, which is hazardous and has a considerable pollution potential. Cultivating microalgae in wastewater is an alternative way of overcoming the current high cost of microalgae cultivation and an environmentally friendly treatment method for industrial effluents. The study analyzed the growth and biochemical composition of Chlorella vulgaris cultivated in membrane-treated distillery wastewater (MTDW) and nutrients removal efficiency. The results showed biomass productivity of 0.04 g L−1 d−1 for MTDW with the contents of content of protein, carbohydrate, and lipid at 49.6 ± 1.4%, 26.1 ± 0.6%, and 10.4 ± 1.8%, respectively. The removal efficiencies of TN, TP, and COD were 80, 94, and 72.24% in MTDW, respectively. In addition, removal efficiencies of 100, 85.37, and 42.86% for Ca2+, Mg2+, and Mo2− were achieved, respectively. The study added to our growing knowledge on the cultivation of Chlorella with wastewater, suggesting that it was feasible to cultivate Chlorella with MTDW and represented an economical and environmentally friendly strategy for microalgae biomass production and reuse of wastewater resources.

Author(s):  
Viviana Quintero-Dallos ◽  
Janet Bibiana García-Martínez ◽  
Jefferson Eduardo Contreras-Ropero ◽  
Crisostomo Barajas-Ferrerira ◽  
Andrés Fernando Barajas-Solano ◽  
...  

This study investigates distillery wastewater, commonly known as vinasse, as a potential culture medium for the production of Chlorella vulgaris and its most relevant metabolites. The effect of vinasse concentration on the composition of the biomass (proteins, carbohydrates and lipids) was evaluated in treatments performed in 6-L tubular air-lift reactors. The reactors were operated at 25 °C for 18 days, in total darkness, under a continuous flow of air. Results showed a rapid growth of microalgae in the first ten days, when an average production of 0.87 g/L was reached. Then, the daily biomass productivity began to decrease, up to an average value of 11.8 g/L at the 16th day. For all treatments, there was a significant reduction in the concentration of most metabolites in the first eight days. This was likely due to the adaptation of the biomass to the new conditions, with a the transition from autotrophic to heterotrophic metabolism. From the 10th day, the concentration of metabolites in the biomass began to increase, reaching a nearly constant value at the 16th day. The observed maximum concentrations (%w/w) were: 48.95% proteins, 2.88% xylose, 7.82% glucose, 4.54% arabinose, 8.28% fructose and 4.82% lipids. These values were only marginally affected by the type of treatment. Overall, the results obtained suggest that vinasse is a promising and sustainable medium for the growth of C. vulgaris and the production of valuable metabolites.


Author(s):  
Viviana Quintero-Dallos ◽  
Janet B. García-Martínez ◽  
Jefferson E. Contreras-Ropero ◽  
Andrés F. Barajas-Solano ◽  
Crisostomo Barajas-Ferrerira ◽  
...  

This study investigates distillery wastewater, commonly known as vinasse, as a potential culture medium for the production of Chlorella vulgaris and its most relevant metabolites. The effect of vinasse concentration on the composition of the biomass (proteins, carbohydrates and lipids) was evaluated in treatments performed in 6-L tubular air-lift reactors. The reactors were operated at 25 °C for 18 days, in total darkness, under a continuous flow of air. Results showed a rapid growth of microalgae in the first ten days, when an average production of 0.87 g/L was reached. Then, the daily biomass productivity began to decrease, up to an average value of 11.8 g/L at the 16th day. For all treatments, there was a significant reduction in the concentration of most metabolites in the first eight days. This was likely due to the adaptation of the biomass to the new conditions, with a transition from autotrophic to heterotrophic metabolism. From the 10th day, the concentration of metabolites in the biomass began to increase, reaching a nearly constant value at the 16th day. The observed maximum concentrations (%w/w) were: 48.95% proteins, 2.88% xylose, 7.82% glucose, 4.54% arabinose, 8.28% fructose and 4.82% lipids. These values were only marginally affected by the type of treatment. Overall, the results obtained suggest that vinasse is a promising and sustainable medium for the growth of C. vulgaris and the production of valuable metabolites.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1526 ◽  
Author(s):  
Viviana Quintero-Dallos ◽  
Janet B. García-Martínez ◽  
Jefferson E. Contreras-Ropero ◽  
Andrés F. Barajas-Solano ◽  
Crisostomo Barajas-Ferrerira ◽  
...  

This study investigates distillery wastewater, commonly known as vinasse, as a potential culture medium for the production of Chlorella vulgaris and its most relevant metabolites. The effect of vinasse concentration on the composition of the biomass (proteins, carbohydrates, and lipids) was evaluated in treatments performed in 6-L tubular air-lift reactors. The reactors were operated at 25 °C for 18 days, in total darkness, under a continuous flow of air. Results showed a rapid growth of microalgae in the first ten days, when an average production of 0.87 g/L was reached. Then, the daily biomass productivity began to decrease, up to an average value of 11.8 g/L at the 16th day. For all treatments, there was a significant reduction in the concentration of most metabolites in the first eight days. This was likely due to the adaptation of the biomass to the new conditions, with a transition from autotrophic to heterotrophic metabolism. From the 10th day, the concentration of metabolites in the biomass began to increase, reaching a nearly constant value at the 16th day. The observed maximum concentrations (%w/w) were: 48.95% proteins, 2.88% xylose, 7.82% glucose, 4.54% arabinose, 8.28% fructose, and 4.82% lipids. These values were only marginally affected by the type of treatment. Overall, the results obtained suggest that vinasse is a promising and sustainable medium for the growth of C. vulgaris and the production of valuable metabolites.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1644 ◽  
Author(s):  
Guyue Zou ◽  
Yuhuan Liu ◽  
Qi Zhang ◽  
Ting Zhou ◽  
Shuyu Xiang ◽  
...  

Fresh pig urine is unsuitable for microalgae cultivation due to its high concentrations of NH4+-N, high pH and insufficient magnesium. In this study, fresh pig urine was pretreated by dilution, pH adjustment, and magnesium addition in order to polish wastewater and produce microalgae biomass. Chlorella vulgaris was cultured in an in-house-designed light-receiving-plate (LRP)-enhanced raceway pond to treat the pretreated pig urine in both batch and continuous mode under outdoor conditions. NH4+-N and TP in wastewater were detected, and the growth of C. vulgaris was evaluated by chlorophyll fluorescence activity as well as biomass production. Results indicated that an 8-fold dilution, pH adjusted to 6.0 and MgSO4·7H2O dosage of 0.1 mg·L−1 would be optimal for the pig urine pretreatment. C. vulgaris could stably accumulate biomass in the LRP-enhanced raceway pond when cultured by both BG11 medium and the pretreated pig urine. About 1.72 g·m−2·day−1 of microalgal biomass could be produced and 98.20% of NH4+-N and 68.48% of TP could be removed during batch treatment. Hydraulic retention time of 7-9d would be optimal for both efficient nutrient removal and microalgal biomass production during continuous treatment.


Author(s):  
Seyed Mojtaba Soleymani Robati ◽  
Mohsen Nosrati ◽  
Faezeh Ghanati ◽  
Abazar Hajnowrouzi ◽  
Dominique Grizeau ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1020
Author(s):  
Pamela Lazo ◽  
Andrea Lazo

In Chile, 85% of tailings impoundments are inactive or abandoned and many of them do not have a program of treatment or afforestation. The phytoremediation of tailings with Oxalis gigantea, Cistanthe grandiflora, Puya berteroniana and Solidago chilensis have been tested in order to find plants with ornamental value and low water requirements, which enable reductions in molybdenum (Mo), copper (Cu) or lead (Pb) concentrations creating an environmentally friendly surrounding. Ex-situ phytoremediation experiments were carried out for seven months and Mo, Cu and Pb were measured at the beginning and at the end of the growth period. The capacity of these species to phyto-remedy was evaluated using the bioconcentration and translocation factors, along with assessing removal efficiency. Solidago chilensis showed the ability to phytoextract Mo while Puya berteroniana showed potential for Cu and Mo stabilization. The highest removal efficiencies were obtained for Mo, followed by Cu and Pb. The maximum values of removal efficiency for Mo, Cu and Pb were 28.7% with Solidago chilensis, 15.6% with Puya berteroniana and 8.8% with Cistanthe grandiflora, respectively. Therefore, the most noticeable results were obtained with Solidago chilensis for phytoextraction of Mo.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 413 ◽  
Author(s):  
Esveidi Montserrat Valdovinos-García ◽  
Juan Barajas-Fernández ◽  
María de los Ángeles Olán-Acosta ◽  
Moisés Abraham Petriz-Prieto ◽  
Adriana Guzmán-López ◽  
...  

A current concern is the increase in greenhouse gas emissions, mainly CO2, with anthropogenic sources being the main contributors. Microalgae have greater capacity than terrestrial plants to capture CO2, with this being an attraction for using them as capture systems. This study aims at the techno-economic evaluation of microalgae biomass production, while only considering technologies with industrial scaling potential. Energy consumption and operating costs are considered as parameters for the evaluation. In addition, the capture of CO2 from a thermoelectric plant is analyzed, as a carbon source for the cultivation of microalgae. 24 scenarios were evaluated while using process simulation tools (SuperPro Designer), being generated by the combination of cultivations in raceway pond, primary harvest with three types of flocculants, secondary harvest with centrifugation and three filtering technologies, and finally the drying evaluated with Spray and Drum Dryer. Low biomass productivity, 12.7 g/m2/day, was considered, achieving a capture of 102.13 tons of CO2/year in 1 ha for the cultivation area. The scenarios that included centrifugation and vacuum filtration are the ones with the highest energy consumption. The operating costs range from US $ 4.75–6.55/kg of dry biomass. The choice of the best scenario depends on the final use of biomass.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1962
Author(s):  
Alcinda P. Lopes ◽  
Francisca M. Santos ◽  
Tânia F. C. V. Silva ◽  
Vítor J. P. Vilar ◽  
José C. M. Pires

Microalgae can be a future source of biomass with a wide range of applications, including its use to solve current environmental issues. One of the main variables for microalgal cultivation is the light supply: (i) its intensity that often does not present a uniform spatial distribution inside the culture; (ii) photoperiod; and (iii) spectrum. Therefore, this study aims to evaluate the growth of the microalgae Chlorella vulgaris in a tubular photobioreactor with compound parabolic collectors (CPCs) under outdoor conditions. The effect of ultraviolet and visible radiation on biomass productivity and nutrients (nitrogen and phosphorus) uptake was assessed. The maximum biomass productivity was (5 ± 1) × 10−3 g·L−1·h−1, and the specific growth rates ranged from (1.1 ± 0.3) × 10−2 to (2.0 ± 0.6) × 10−2 h−1. Regarding nutrient uptake, initial removal rates of (0.9 ± 0.4) mg N·L−1·h−1 for nitrogen and (0.17 ± 0.04) mg P·L−1·h−1 for phosphorus were reached. These values increased with visible and ultraviolet irradiance until certain values (143 WVIS·m−2 and 9 WUV·m−2 for biomass productivity; 101 WVIS·m−2 and 6 WUV·m−2 for nutrient removal) and then decreased for higher ones due to the photoinhibition phenomenon. Therefore, the application of CPCs to photobioreactors (PBRs) may be beneficial for microalgal culture in countries with higher latitude (with lower solar irradiance levels).


2010 ◽  
Vol 61 (5) ◽  
pp. 1279-1288 ◽  
Author(s):  
Z. Ibrahim ◽  
M. F. M. Amin ◽  
A. Yahya ◽  
A. Aris ◽  
K. Muda

Textile wastewater, one of the most polluted industrial effluents, generally contains substantial amount of dyes and chemicals that will cause increase in the COD, colour and toxicity of receiving water bodies if not properly treated. Current treatment methods include chemical and biological processes; the efficiency of the biological treatment method however, remains uncertain since the discharged effluent is still highly coloured. In this study, granules consisting mixed culture of decolourising bacteria were developed and the physical and morphological characteristics were determined. After the sixth week of development, the granules were 3–10 mm in diameter, having good settling property with settling velocity of 70 m/h, sludge volume index (SVI) of 90 to 130 mL/g, integrity coefficient of 3.7, and density of 66 g/l. Their abilities to treat sterilised raw textile wastewater were evaluated based on the removal efficiencies of COD (initial ranging from 200 to 3,000 mg/L), colour (initial ranging from 450 to 2000 ADMI) of sterilised raw textile wastewater with pH from 6.8 to 9.4. Using a sequential anaerobic-aerobic treatment cycle with hydraulic retention time (HRT) of 24 h, maximum removal of colour and COD achieved was 90% and 80%, respectively.


Sign in / Sign up

Export Citation Format

Share Document