scholarly journals Soil Fertility Changes With Climate and Island Age in Galápagos: New Baseline Data for Sustainable Agricultural Management

2021 ◽  
Vol 9 ◽  
Author(s):  
Matthias Strahlhofer ◽  
Martin H. Gerzabek ◽  
Nicola Rampazzo ◽  
Paulina M. Couenberg ◽  
Evelyn Vera ◽  
...  

While the extended absence of human influence has led to matchless natural conditions on the Galápagos archipelago, agricultural activities on the inhabited islands are increasingly affecting soil health and functioning. However, a systematic assessment of the agricultural soils on the Galápagos Islands is still absent. Plate tectonics and hotspot volcanism cause an eastward drift of the archipelago and result in a west-to-east soil age gradient from approx. 1 to 1,000 ka. In addition, precipitation regimes change from arid to humid with elevation on the higher-standing islands. The objective of this study was to investigate differences in soil fertility parameters and Mehlich (III)-extractable nutrient levels along these gradients in order to provide baseline information for sustainable agricultural management. Topsoil samples (0–20 cm) from 125 farms of the islands Isabela, Santa Cruz and San Cristóbal were analyzed. Gravel and sand content, pH, electrical conductivity, cation exchange capacity, base saturation, soil organic C and total N content tended to decrease with increasing island age, while clay content, soil macroaggregate stability, plant-available water and bulk density increased. Mehlich (III)-extractable base cations Ca, K, Mg and Na as well as P, Fe and Zn showed a decreasing tendency from the youngest to the oldest island, while Mn increased with island age. Mehlich (III)-extractable Cu and Na reached their highest levels on the most intensively farmed, intermediate-aged island Santa Cruz, likely related to anthropogenic inputs and irrigation with brackish water, respectively. Changes along the altitudinal climate gradient within the studied islands were most significant for soil pH, base saturation, and Mehlich (III)-extractable Ca and Mn. Our results highlight the importance of site-specific agricultural management to account for the strong heterogeneity in soil parameters among and within the Galápagos archipelago. The data provided herein shall serve as a baseline for targeted future management strategies to avoid soil degradation, restore and maintain soil functioning and, hence, sustain the soils’ provision of ecosystem services in this unique archipelago.

2017 ◽  
Vol 10 (1) ◽  
pp. 325
Author(s):  
Hebert D. A. Abobi ◽  
Armand W. Koné ◽  
Bernard Y. Koffi ◽  
Saint Salomon F. Diahuissié ◽  
Stanislas K. Loukou ◽  
...  

Poultry litter is increasingly used as organic amendment in market gardening in Côte d’Ivoire. To know about the sustainability of this practice, its impacts on soil quality should be known. This study aimed at assessing the effect on soil fertility of composted poultry litter addition for 16 years following two distinct ways, and identifying soil parameters driving cucumber yield. Trials were laid out in a Fisher randomized block design with 3 treatments replicated 5 times each: Control (C), Surface-applied compost (SAC) and Buried compost (BC). Soil (0-20 cm) chemical characteristics and cucumber growth and yield parameters were measured. Values of all parameters were higher with compost addition compared to the control, except for the C:N ratio. SAC and BC showed similar values of organic C, total N, CEC, pH and available phosphorus. However, Ca2+, Mg2+, K+ and base saturation were higher in SAC than in BC. Relative to values in the control, the greatest changes in soil parameters were observed with exchangeable cations, followed by soil organic matter. Soil organic C and total N concentrations have doubled in SAC while Ca2+, Mg2+, and K+ increased at greater rate (702.4, 400.9 and 186.67% respectively). Also, cucumber growth parameters were the highest with compost addition compared to the control. Significant effect of the compost application way on cucumber was also observed: collar diameter, leaf area and fresh fruit yield in SAC (0.72±0.02 cm, 258.9±12.3 cm2, 11.1±1.3 t ha-1, respectively) were higher than in BC (0.56±0.01 cm, 230.2±2.5 cm2, 5.4±0.5 t ha-1 respectively). Fruit yields in SAC and BC were four times and twice higher than in the control (2.6±0.3 t ha-1), respectively. Cucumber growth parameters were determined by soil concentration in Mg2+ while yield was determined by Ca2+. Composted poultry litter should be promoted for a sustainable soil fertility management in vegetable farming systems.


AgriPeat ◽  
2019 ◽  
Vol 19 (01) ◽  
pp. 1-14
Author(s):  
Administrator Journal

ABSTRACTThis study aims to determine the effect of the location distance from the river bank and the depth ofsoil layer to the soil chemical properties in the tidal land area. The study was conducted in April untilJune 2016 in the tidal areas of Bajarum village, District of Kota Besi, East Kotawaringin, CentralBorneo Province. The study used survey methods and soil sampling in the field, analysis of soilsamples in the laboratory and continued with analysis and description of data. Soil sampling wasconducted at distances of 250, 500, 750, 1.000, 1.250 and 1.500 meters from the Mentaya river bankat two depth soil layers (0 - 25 cm and 25 - 50 cm). The soil chemistry properties analyzed includedpH, cation exchange capacity (CEC), base saturation, organic C, N total, total P2O5, total K2O,alumunium and hydrogen exchangeable and soil fertility status. The results of study showed that: (1)The further distance of soil from the position of Mentaya river bank there is an increase of organic C,total P2O5, total N, total K2O, pH, CEC, base saturation and soil fertility status, on the contraryshowed a decrease in alumunium and hydrogen exchangeable. The limiting factor of soil fertility ismainly the low base saturation, besides that at some point observation also due to low CEC, totalP2O5 and total K2O. (2) Sub soil layer (25 - 50) cm has a higher pH and base saturation valuescompared to topsoil layer (0 - 25) cm. In contrast, topsoil layer has CEC, alumunium and hydrogenexchangeable, total P2O5, total K2O, total N and organic C values higher than sub soil layer.Keywords: distance from river, tidal soil, soil chemical properties.


2018 ◽  
Vol 55 (5) ◽  
pp. 738-751
Author(s):  
AYA B. N'DRI ◽  
ARMAND W. KONE ◽  
SEBASTIEN K. K. LOUKOU ◽  
SEBASTIEN BAROT ◽  
JACQUES GIGNOUX

SUMMARYBiomass burning has links with a number of global concerns including soil health, food security and climate change. In central Côte d'Ivoire (West Africa), we conducted a field study to compare nutrient losses, soil fertility and yam yield in slash-and-burn versus slash-and-mulch agriculture. Trials involved five sites established in the dominant Chromolaena odorata fallows of the region, each consisting of paired plots: slash and burnt biomass (SB) versus slashed and unburnt biomass, but left to serve as mulch (SM). Carbon and five elemental nutrients were assessed in the aboveground biomass prior to burning and in ash after fires; losses were assessed by subtraction. The greatest proportions of loss occurred with C (95%), N (95%) and K (74%), corresponding to losses into the atmosphere of 3532 ± 408, 200 ± 36, 132 ± 36 kg ha−1. Six weeks after the fire, soil properties were assessed: soil organic C, total N and Mg2+ were higher in SM than in SB sites. At final harvest, yam tuber yield was twice as large in SM as in SB (18 ± 4 vs. 9 ± 2 Mg ha−1) with soil C, total N and K+ as the main influential soil parameters. The key finding was that the elements lost in greatest proportion during burning were those mostly influencing yam yields. Because a clear negative relationship between biomass burning and yam production has been established the promotion of the more productive, alternate slash-and-mulch system compared to slash-and-burn system, is warranted. The findings of our research can be used in support of developing a sustainable yam production system in the region and in West Africa more generally.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


Author(s):  
Erwin Prastowo ◽  
Lina Dwi Agustina ◽  
Cahyo Prayogo

Soil fertility level improvement in an environmentally friendlier way has been a key to provide a sustainable cocoa production. Earthworms, as decomposeragents in soil, may provide a sustainable way of improving soil fertility level. The objective of this study was to quantify top soil earthworm population andsome important soil characteristics, e.g. soil moisture, organic C, total N, and pH to see if there was any response observed due to different level and type oforganic waste applications. Their surface populations, i.e. at 5–10 cm depth, within cocoa circle were investigated with respect to different type of organic wasteapplications, i.e. cocoa pod waste, cocoa leaf waste, and sheep manure. For cocoa derived organic matter, the level of application was arranged at 5, 10, and 20 ton/ha to obtain an optimal condition at which the highest population of earthworm is obtained. A field investigation was performed at a square of 900 cm2 sizedarea, and extending down to 5–10 cm depth. Additionally, the effect of organic waste to top soil characteristics were also determined mainly to some importantparameters such as soil moisture, organic carbon, total nitrogen, and soil pH (H2O). Our analysis suggest that field heterogeneity condition may limit the conclusion, mainly related to the question of to what extent the effect of organic wastes to the changes in terms of soil characteristics. The application of organic wastes was able to increase the population of earthworms. Their highest abundance was obtained following the application of cocoa pod at 20 ton/ha, which was about 5 times higher than the population in the control. 


Soil Research ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 177 ◽  
Author(s):  
B. Anjan Kumar Prusty ◽  
Rachna Chandra ◽  
P. A. Azeez

We measured the background level and spatial variation of carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) and associated basic soil parameters along the depth profile for 3 years, in 3 habitats (woodland, wetland, and grassland), in Keoladeo National Park (KNP), an important water fowl reserve and a world heritage site in India. The study examined soils at 5 depths (0, 0.25, 0.50, 0.75 and 1.0 m) for 3 years, i.e. from 2003 to 2005. Total organic C (TOC), total N (TN), total available P (TAP), and total available S (TAS), irrespective of the habitat type and year, were found to be highest in the litter layer, gradually declining with depth. Elemental ratios (C : N, C : P, and C : S) followed the same declining trend, whereas the N : P ratio increased down the soil profile. The high C : N and C : S ratios in the litter layer suggest the relatively low mobilisation of N and S from the decaying detritus layer. All the variables studied varied significantly among the soil layers (GLM-ANOVA, P < 0.05). Principal component analysis (PCA) showed 4 components based on examination of the scree plot. The first component accounted for 27.1% of the total variance in soil characteristics among samples, reflecting the influence of soil variables such as P, TOC, and pH. The second component accounted for 23.5% of the total variance, reflecting the influence of total dissolved solids (TDS) and TAS. The influence of C on elemental ratio (C : S) was pointed by the third component, accounted for 14.2% of the total variance. The fourth component accounted for 13.6% of the variance, indicating the influence of soil TN. Thus, the 4 PCA components that accounted for 78.4% of the total variance in the data can be qualified as N : P/soil P/C, TDS/TAS, C : S ratio, and soil TN, respectively.


2019 ◽  
Vol 7 (2) ◽  
pp. 173
Author(s):  
Jannatul Ferdush ◽  
Md. Meftahul Karim ◽  
Iffat Jahan Noor ◽  
Sadia Afrin Sadia Afrin Ju ◽  
Tofayel Ahamed ◽  
...  

A field experiment was conducted to investigate the effect of pruned materials of two hedgerow species on wheat production and soil nutrient changes at different nitrogen levels in the research farm of the Bangabandhu Shiekh Mujibur Rahman Agricultural University (BSMARU) during November 2012 to March 2013. The design of the experiment was split plot, where two multipurpose tree species (MPTS) namely Gliricidia sepium and Leucaena leucocephala were arranged in main plots and five different doses of nitrogen (0, 25, 50, 75 and 100 % of recommended dose) with pruned materials were distributed to sub plots. Alley widths of both tree species were 6.0 meter. There were also control plots where full dose of recommended nitrogen was applied but no pruned material (PM) was incorporated. The soil chemical properties in the alleys consisting of G. sepium and L. leucocephala responded differently. Positive changes in the soil fertility in terms of soil pH, organic C, total N, available P, available S and exchangeable Ca, Mg, K and CEC of the top soil layer were observed in alley cropping system. Pruned materials application substantially reduced the nitrogen requirement for wheat production and 50 % Nitrogen fertilizer could be saved through pruned materials application. Among the tree species G. sepium seemed to be superior over L. leucocephala in building soil health.    


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Fanuel Laekemariam ◽  
Kibebew Kibret

Soil is spatially heterogeneous and needs site-specific management. However, soil nutrient information at larger scale in most cases is lacking. Consequently, fertilizer advisory services become dependent upon blanket recommendation approach. Subsequently, it affects yield and profitability. This study is aimed at explaining soil fertility heterogeneity in Wolaita zone, Southern Ethiopia. About 789 soil samples were collected to evaluate soil physical (color, particle size, and bulk density) and chemical properties (pH, OC, N, P, K, Ca, Mg, B, Cu, Fe, Mn, Zn, PBS, and CEC). The laser diffraction method for soil particles and mid-infrared diffused reflectance (MIR) spectral analysis for OC, TN, and CEC determination were employed. Mehlich-III extraction and inductively coupled plasma (ICP) spectrometer measurement were used for the remaining elements. The result based on principal component analysis showed that 52% of the total variations were explained by exchangeable bases, CEC, pH, available P, Cu, B, and particle sizes. Clay texture and acidic soil reaction are dominant. Soil parameters with the following ranges were found at low status: soil OC (0.2–6.9%), total N (0.01–0.7%), available P (0.1–238 mg/kg), S (4–30 mg/kg), B (0.01–6.9 mg/kg), and Cu (0.01–5.0 mg/kg). Besides, low levels of exchangeable Ca, Mg, and K (Mg-induced K deficiency) on 22, 34, and 54% soil samples, respectively, were recorded. The soil contained sufficient Fe, Zn, and Mn. In conclusion, the study aids in developing practical decision for optimum soil management interventions and overcomes lower productivity occurring due to fertilizer use that is not tailored to the local conditions. Overall, continuous cropping, low return of crop residues, and low and/or no fertilizer application might have caused the low status of N, P, K, S, B, and Cu. Therefore, application of inorganic fertilizers specific to the site, lime in acidic soils, and organic fertilizers are recommended to restore the soil fertility and improve crop productivity.


2021 ◽  
Author(s):  
Greta Formaglio ◽  
Edzo Veldkamp ◽  
Muhammad Damris ◽  
Aiyen Tjoa ◽  
Marife D. Corre

AbstractIntensive management practices in large-scale oil palm plantations can slow down nutrient cycling and alter other soil functions. Thus, there is a need to reduce management intensity without sacrificing productivity. The aim of our study was to investigate the effect of management practices on gross rates of soil N cycling and soil fertility. In Jambi province, Indonesia, we established a management experiment in a large-scale oil palm plantation to compare conventional practices (i.e. high fertilization rates and herbicide weeding) with reduced management intensity (i.e. reduced fertilization rates and mechanical weeding). Also, we compared the typical management zones characterizing large-scale plantations: palm circle, inter-row and frond-stacked area. After 1.5 years of this experiment, reduced and conventional management showed comparable gross soil N cycling rates; however, there were stark differences among management zones. The frond-stacked area had higher soil N cycling rates and soil fertility (high microbial biomass, extractable C, soil organic C, extractable organic N, total N and low bulk density) than inter-row and palm circle (all p ≤ 0.05). Microbial biomass was the main driver of the soil N cycle, attested by its high correlation with gross N-cycling rates (r = 0.93–0.95, p < 0.01). The correlations of microbial N with extractable C, extractable organic N, soil organic C and total N (r = 0.76–0.89, p < 0.01) suggest that microbial biomass was mainly regulated by the availability of organic matter. Mulching with senesced fronds enhanced soil microbial biomass, which promoted nutrient recycling and thereby can decrease dependency on chemical fertilizers.


2019 ◽  
Vol 14 (No. 3) ◽  
pp. 121-131 ◽  
Author(s):  
Kateřina Zajícová ◽  
Tomáš Chuman

Land use changes have a significant impact on soil properties and in some cases they are considered to be among the main threats to soil quality. The present study focuses on the relationship between soil chemistry and land use in a karstic region in Romania, where forests were converted to agricultural land 190 years ago by Czech settlers in the Banat Region. Out of several villages founded by the Czech settlers the study was done around the village of Sfinta Elena. The uniqueness of this study is that traditional agricultural practices using low intensity farming (fallow period, organic fertilizers) have been used continuously since the village was founded. Nowadays the landscape is a mosaic of different land uses. Sixty soil samples from 6 land uses, analysed for pH (active and exchangeable), total cation exchange capacity (CEC), base saturation, amount of Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>, accessible P, total N, and soil organic carbon, showed very low concentrations of analysed elements and very low values of CEC and base saturation in soils. Current arable land use exhibited the lowest values especially of soil organic C. Surprisingly, forest soils differed significantly from agricultural soils only in C/N ratio and soil organic C concentration.  


Sign in / Sign up

Export Citation Format

Share Document