scholarly journals Genetic Basis of Phenotypic Differences Between Chinese Yunling Black Goats and Nubian Goats Revealed by Allele-Specific Expression in Their F1 Hybrids

2019 ◽  
Vol 10 ◽  
Author(s):  
Yanhong Cao ◽  
Han Xu ◽  
Ran Li ◽  
Shan Gao ◽  
Ningbo Chen ◽  
...  
2019 ◽  
Vol 116 (12) ◽  
pp. 5653-5658 ◽  
Author(s):  
Lin Shao ◽  
Feng Xing ◽  
Conghao Xu ◽  
Qinghua Zhang ◽  
Jian Che ◽  
...  

Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.


2021 ◽  
Author(s):  
S. Sánchez-Ramírez ◽  
A. D. Cutter

ABSTRACTSummaryChanges to regulatory sequences account for important phenotypic differences between species and populations. In heterozygote individuals, regulatory polymorphism typically manifests as allele-specific expression (ASE) of transcripts. ASE data from inter-species and inter-population hybrids, in conjunction with expression data from the parents, can be used to infer regulatory changes in cis and trans throughout the genome. Improper data handling, however, can create problems of mapping bias and excessive loss of information, which are prone to arise unintentionally from the cumbersome pipelines with multiple dependencies that are common among current methods. Here, we introduce a new, selfcontained method implemented in Python that generates allele-specific expression counts from genotype-specific map alignments. Rather than assessing individual SNPs, our approach sorts and counts reads within a given homologous region by comparing individual read-mapping statistics from each parental alignment. Reads that are aligned ambiguously to both references are resolved proportionally to the allele-specific matching read counts or statistically using a binomial distribution. Using simulations, we show CompMap has low error rates in assessing regulatory divergence.AvailabilityThe Python code with examples and installation instructions is available on the GitHub repository https://github.com/santiagosnchez/[email protected] information


Gene ◽  
2020 ◽  
Vol 747 ◽  
pp. 144671 ◽  
Author(s):  
Peng Ren ◽  
Feilong Deng ◽  
Ye Wang ◽  
Jinshan Ran ◽  
Jingjing Li ◽  
...  

2020 ◽  
Author(s):  
Junjie Shao ◽  
Sangang He ◽  
Xiangyu Pan ◽  
Zhirui Yang ◽  
Hojjat Asadollahpour Nanaei ◽  
...  

Abstract Background: The thin-tailed sheep breeds from Europe and the fat-tailed sheep breeds from China exhibit distinct phenotypic differences in fat deposition and meat production traits. However, the molecular mechanisms underlying gene expression related to these phenotypic differences are not well understood. Allele-specific expression (ASE) refers to the significant imbalance of expression levels of two parental alleles. Characterization of such events in F1 hybrid offspring generated from these two groups of sheep breeds can minimize the external factors influencing gene expression and reveal the variants with a cis -regulatory effect on gene expression. The aim of the present study was to investigate the genetic factors that influence different fat-deposition and meat production traits between thin- and fat-tailed sheep.Results: Fifteen F1 hybrids were generated from crosses between Texel and Kazakh sheep as the representative phenotypes of thin- and fat-tailed breeds, respectively. Totally, 33 whole genomes from F1 individuals and their parents were sequenced with an average depth of ~17.21× coverage per sample. ASE analysis results from 70 RNA-seq samples of adipose and skeleton muscle tissues showed 128 ASE candidate genes were related to the function of fat deposition and meat production traits. A genome-wide scan of selective sweeps was also conducted between these two groups of sheep breeds in an effort to identify genomic regions related to fat deposition and meat production, respectively. We detected signatures of selection in ASE genes associated with fat deposition (e.g., PDGFD ) and meat production traits (e.g., LRCC2 ). Further analysis suggested that PDGFD and LRCC2 genes were speculated to be causative genes for fat deposition and meat production traits in sheep, respectively. Furthermore, AMPK signaling pathway was significantly enriched in ASE genes related to fatty acid biosynthesis in both adipose and skeleton muscle tissues, while PPAR signaling pathway was significantly enriched in ASE genes related to lipid metabolism in adipose tissue. Conclusions: Our finding illustrates that the expression of identified ASE genes could potentially lead to the differences in traits of fat deposition and meat production between thin- and fat-tailed sheep. Keywords: allele-specific expression, phenotypic difference, thin- and fat-tailed sheep, whole-genome sequencing, transcriptome


2019 ◽  
Author(s):  
Robert D. Cooper ◽  
H. Bradley Shaffer

AbstractHybridization between native and non-native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their ability to outcompete the native parent. It is crucial to understand the mechanisms that drive these transgressive hybrid traits to diagnose and develop strategies to manage hybrid populations. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 40% (6/15) able to tolerate temperatures greater than either parent. We quantified the genomic response of each individual to discover and compare thermal abatement strategies. We found that CTS and BTS have strikingly different numbers and tissue-specific patterns of overall gene expression, with hybrids expressing intermediate values. We evaluated transgressive and variable phenotypes by uncovering regulatory mechanisms that give rise to these unique traits. F1 hybrids display abundant and variable degrees of allele specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms of the parental lineages. We found that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting that BTS-biased expression confers improved thermal tolerance. We discuss the implications of these findings with respect to ongoing management of CTS in the face of future climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Joseph Tomlinson ◽  
Shawn W. Polson ◽  
Jing Qiu ◽  
Juniper A. Lake ◽  
William Lee ◽  
...  

AbstractDifferential abundance of allelic transcripts in a diploid organism, commonly referred to as allele specific expression (ASE), is a biologically significant phenomenon and can be examined using single nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment patterns, but all three tissues showed enrichment for pathways involved in translation.


Genetics ◽  
2013 ◽  
Vol 195 (3) ◽  
pp. 1157-1166 ◽  
Author(s):  
Sandrine Lagarrigue ◽  
Lisa Martin ◽  
Farhad Hormozdiari ◽  
Pierre-François Roux ◽  
Calvin Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document