scholarly journals Predicting Drug-Disease Association Based on Ensemble Strategy

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianlin Wang ◽  
Wenxiu Wang ◽  
Chaokun Yan ◽  
Junwei Luo ◽  
Ge Zhang

Drug repositioning is used to find new uses for existing drugs, effectively shortening the drug research and development cycle and reducing costs and risks. A new model of drug repositioning based on ensemble learning is proposed. This work develops a novel computational drug repositioning approach called CMAF to discover potential drug-disease associations. First, for new drugs and diseases or unknown drug-disease pairs, based on their known neighbor information, an association probability can be obtained by implementing the weighted K nearest known neighbors (WKNKN) method and improving the drug-disease association information. Then, a new drug similarity network and new disease similarity network can be constructed. Three prediction models are applied and ensembled to enable the final association of drug-disease pairs based on improved drug-disease association information and the constructed similarity network. The experimental results demonstrate that the developed approach outperforms recent state-of-the-art prediction models. Case studies further confirm the predictive ability of the proposed method. Our proposed method can effectively improve the prediction results.

2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Hai-Cheng Yi ◽  
Zhu-Hong You ◽  
Lei Wang ◽  
Xiao-Rui Su ◽  
Xi Zhou ◽  
...  

Abstract Background Drug repositioning, meanings finding new uses for existing drugs, which can accelerate the processing of new drugs research and development. Various computational methods have been presented to predict novel drug–disease associations for drug repositioning based on similarity measures among drugs and diseases. However, there are some known associations between drugs and diseases that previous studies not utilized. Methods In this work, we develop a deep gated recurrent units model to predict potential drug–disease interactions using comprehensive similarity measures and Gaussian interaction profile kernel. More specifically, the similarity measure is used to exploit discriminative feature for drugs based on their chemical fingerprints. Meanwhile, the Gaussian interactions profile kernel is employed to obtain efficient feature of diseases based on known disease-disease associations. Then, a deep gated recurrent units model is developed to predict potential drug–disease interactions. Results The performance of the proposed model is evaluated on two benchmark datasets under tenfold cross-validation. And to further verify the predictive ability, case studies for predicting new potential indications of drugs were carried out. Conclusion The experimental results proved the proposed model is a useful tool for predicting new indications for drugs or new treatments for diseases, and can accelerate drug repositioning and related drug research and discovery.


RSC Advances ◽  
2017 ◽  
Vol 7 (51) ◽  
pp. 32216-32224 ◽  
Author(s):  
Xiaoying Li ◽  
Yaping Lin ◽  
Changlong Gu

The NSIM integrates the disease similarity network, miRNA similarity network, and known miRNA-disease association network on the basis of cousin similarity to predict not only novel miRNA-disease associations but also isolated diseases.


2020 ◽  
Author(s):  
Peng Chen ◽  
Tianjiazhi Bao ◽  
Xiaosheng Yu ◽  
Zhongtu Liu

Abstract Background: Drug repositioning has aroused extensive attention by scholars at home and abroad due to its effective reduction in development cost and time of new drugs. However, the current drug repositioning based on computational analysis methods is still limited by the problems of data sparse and fusion methods, so we use autoencoders and adaptive fusion methods to calculate drug repositioning.Results: In this paper, a drug repositioning algorithm based on deep auto-encoder and adaptive fusion has been proposed against the problems of declined precision and low-efficiency multi-source data fusion caused by data sparseness. Specifically, the drug is repositioned through fusing drug-disease association, drug target protein, drug chemical structure and drug side effects. To begin with, drug feature data integrated by drug target protein and chemical structure were processed with dimension reduction via a deep auto-encoder, to obtain feature representation more densely and abstractly. On this basis, disease similarity was computed by the drug-disease association data, while drug similarity was calculated by drug feature and drug-side effect data. Besides, the predictions of drug-disease associations were calculated using a Top-k neighbor method that is more suitable for drug repositioning. Finally, a predicted matrix for drug-disease associations has been acquired upon fusing a wide variety of data via adaptive fusion. According to the experimental results, the proposed algorithm has higher precision and recall rate in comparison to DRCFFS, SLAMS and BADR algorithms that use the same data set for computation.Conclusion: our proposed algorithm contributes to studying novel uses of drugs, as can be seen from the case analysis of Alzheimer's disease. Therefore, it can provide a certain auxiliary effect for clinical trials of drug repositioning


Author(s):  
Mengyun Yang ◽  
Gaoyan Wu ◽  
Qichang Zhao ◽  
Yaohang Li ◽  
Jianxin Wang

Abstract With the development of high-throughput technology and the accumulation of biomedical data, the prior information of biological entity can be calculated from different aspects. Specifically, drug–drug similarities can be measured from target profiles, drug–drug interaction and side effects. Similarly, different methods and data sources to calculate disease ontology can result in multiple measures of pairwise disease similarities. Therefore, in computational drug repositioning, developing a dynamic method to optimize the fusion process of multiple similarities is a crucial and challenging task. In this study, we propose a multi-similarities bilinear matrix factorization (MSBMF) method to predict promising drug-associated indications for existing and novel drugs. Instead of fusing multiple similarities into a single similarity matrix, we concatenate these similarity matrices of drug and disease, respectively. Applying matrix factorization methods, we decompose the drug–disease association matrix into a drug-feature matrix and a disease-feature matrix. At the same time, using these feature matrices as basis, we extract effective latent features representing the drug and disease similarity matrices to infer missing drug–disease associations. Moreover, these two factored matrices are constrained by non-negative factorization to ensure that the completed drug–disease association matrix is biologically interpretable. In addition, we numerically solve the MSBMF model by an efficient alternating direction method of multipliers algorithm. The computational experiment results show that MSBMF obtains higher prediction accuracy than the state-of-the-art drug repositioning methods in cross-validation experiments. Case studies also demonstrate the effectiveness of our proposed method in practical applications. Availability: The data and code of MSBMF are freely available at https://github.com/BioinformaticsCSU/MSBMF. Corresponding author: Jianxin Wang, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: [email protected] Supplementary Data: Supplementary data are available online at https://academic.oup.com/bib.


2020 ◽  
Vol 21 (S13) ◽  
Author(s):  
Renyi Zhou ◽  
Zhangli Lu ◽  
Huimin Luo ◽  
Ju Xiang ◽  
Min Zeng ◽  
...  

Abstract Background Drug discovery is known for the large amount of money and time it consumes and the high risk it takes. Drug repositioning has, therefore, become a popular approach to save time and cost by finding novel indications for approved drugs. In order to distinguish these novel indications accurately in a great many of latent associations between drugs and diseases, it is necessary to exploit abundant heterogeneous information about drugs and diseases. Results In this article, we propose a meta-path-based computational method called NEDD to predict novel associations between drugs and diseases using heterogeneous information. First, we construct a heterogeneous network as an undirected graph by integrating drug-drug similarity, disease-disease similarity, and known drug-disease associations. NEDD uses meta paths of different lengths to explicitly capture the indirect relationships, or high order proximity, within drugs and diseases, by which the low dimensional representation vectors of drugs and diseases are obtained. NEDD then uses a random forest classifier to predict novel associations between drugs and diseases. Conclusions The experiments on a gold standard dataset which contains 1933 validated drug–disease associations show that NEDD produces superior prediction results compared with the state-of-the-art approaches.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2776
Author(s):  
Xiguang Qi ◽  
Mingzhe Shen ◽  
Peihao Fan ◽  
Xiaojiang Guo ◽  
Tianqi Wang ◽  
...  

A gene expression signature (GES) is a group of genes that shows a unique expression profile as a result of perturbations by drugs, genetic modification or diseases on the transcriptional machinery. The comparisons between GES profiles have been used to investigate the relationships between drugs, their targets and diseases with quite a few successful cases reported. Especially in the study of GES-guided drugs–disease associations, researchers believe that if a GES induced by a drug is opposite to a GES induced by a disease, the drug may have potential as a treatment of that disease. In this study, we data-mined the crowd extracted expression of differential signatures (CREEDS) database to evaluate the similarity between GES profiles from drugs and their indicated diseases. Our study aims to explore the application domains of GES-guided drug–disease associations through the analysis of the similarity of GES profiles on known pairs of drug–disease associations, thereby identifying subgroups of drugs/diseases that are suitable for GES-guided drug repositioning approaches. Our results supported our hypothesis that the GES-guided drug–disease association method is better suited for some subgroups or pathways such as drugs and diseases associated with the immune system, diseases of the nervous system, non-chemotherapy drugs or the mTOR signaling pathway.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Liugen Wang ◽  
Min Shang ◽  
Qi Dai ◽  
Ping-an He

Abstract Background More and more evidence showed that long non-coding RNAs (lncRNAs) play important roles in the development and progression of human sophisticated diseases. Therefore, predicting human lncRNA-disease associations is a challenging and urgently task in bioinformatics to research of human sophisticated diseases. Results In the work, a global network-based computational framework called as LRWRHLDA were proposed which is a universal network-based method. Firstly, four isomorphic networks include lncRNA similarity network, disease similarity network, gene similarity network and miRNA similarity network were constructed. And then, six heterogeneous networks include known lncRNA-disease, lncRNA-gene, lncRNA-miRNA, disease-gene, disease-miRNA, and gene-miRNA associations network were applied to design a multi-layer network. Finally, the Laplace normalized random walk with restart algorithm in this global network is suggested to predict the relationship between lncRNAs and diseases. Conclusions The ten-fold cross validation is used to evaluate the performance of LRWRHLDA. As a result, LRWRHLDA achieves an AUC of 0.98402, which is higher than other compared methods. Furthermore, LRWRHLDA can predict isolated disease-related lnRNA (isolated lnRNA related disease). The results for colorectal cancer, lung adenocarcinoma, stomach cancer and breast cancer have been verified by other researches. The case studies indicated that our method is effective.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jieyue He ◽  
Xinxing Yang ◽  
Zhuo Gong ◽  
lbrahim Zamit

Abstract Background Drug repositioning has been an important and efficient method for discovering new uses of known drugs. Researchers have been limited to one certain type of collaborative filtering (CF) models for drug repositioning, like the neighborhood based approaches which are good at mining the local information contained in few strong drug–disease associations, or the latent factor based models which are effectively capture the global information shared by a majority of drug–disease associations. Few researchers have combined these two types of CF models to derive a hybrid model which can offer the advantages of both. Besides, the cold start problem has always been a major challenge in the field of computational drug repositioning, which restricts the inference ability of relevant models. Results Inspired by the memory network, we propose the hybrid attentional memory network (HAMN) model, a deep architecture combining two classes of CF models in a nonlinear manner. First, the memory unit and the attention mechanism are combined to generate a neighborhood contribution representation to capture the local structure of few strong drug–disease associations. Then a variant version of the autoencoder is used to extract the latent factor of drugs and diseases to capture the overall information shared by a majority of drug–disease associations. During this process, ancillary information of drugs and diseases can help alleviate the cold start problem. Finally, in the prediction stage, the neighborhood contribution representation is coupled with the drug latent factor and disease latent factor to produce predicted values. Comprehensive experimental results on two data sets demonstrate that our proposed HAMN model outperforms other comparison models based on the AUC, AUPR and HR indicators. Conclusions Through the performance on two drug repositioning data sets, we believe that the HAMN model proposes a new solution to improve the prediction accuracy of drug–disease associations and give pharmaceutical personnel a new perspective to develop new drugs.


2020 ◽  
Vol 15 ◽  
Author(s):  
Xinguo Lu ◽  
Yan Gao ◽  
Zhenghao Zhu ◽  
Li Ding ◽  
Xinyu Wang ◽  
...  

: MicroRNA is a type of non-coding RNA molecule whose length is about 22 nucleotides. The growing evidence shows that microRNA makes critical regulations in the development of complex diseases, such as cancers, cardiovascular diseases. Predicting potential microRNA-disease associations can provide a new perspective to achieve a better scheme of disease diagnosis and prognosis. However, there is a challenge to predict some potential essential microRNAs only with few known associations. To tackle this, we propose a novel method, named as constrained strategy for predicting microRNA-disease associations called CPMDA, in heterogeneous omics data. Here, we firstly construct disease similarity network and microRNA similarity network to preprocess the microRNAs with none available associations. Then, we apply probabilistic factorization to obtain two feature matrices of microRNA and disease. Meanwhile, we formulate a similarity feature matrix as constraints in the factorization process. Finally, we utilize obtained feature matrixes to identify potential associations for all diseases. The results indicate that CPMDA is superior over other methods in predicting potential microRNA-disease associations. Moreover, the evaluation show that CPMDA has a strong effect on microRNAs with few known associations. In case studies, CPMDA also demonstrated the effectiveness to infer unknown microRNAdisease associations for those novel diseases and microRNAs.


Author(s):  
Nan Sheng ◽  
Hui Cui ◽  
Tiangang Zhang ◽  
Ping Xuan

Abstract As the abnormalities of long non-coding RNAs (lncRNAs) are closely related to various human diseases, identifying disease-related lncRNAs is important for understanding the pathogenesis of complex diseases. Most of current data-driven methods for disease-related lncRNA candidate prediction are based on diseases and lncRNAs. Those methods, however, fail to consider the deeply embedded node attributes of lncRNA–disease pairs, which contain multiple relations and representations across lncRNAs, diseases and miRNAs. Moreover, the low-dimensional feature distribution at the pairwise level has not been taken into account. We propose a prediction model, VADLP, to extract, encode and adaptively integrate multi-level representations. Firstly, a triple-layer heterogeneous graph is constructed with weighted inter-layer and intra-layer edges to integrate the similarities and correlations among lncRNAs, diseases and miRNAs. We then define three representations including node attributes, pairwise topology and feature distribution. Node attributes are derived from the graph by an embedding strategy to represent the lncRNA–disease associations, which are inferred via their common lncRNAs, diseases and miRNAs. Pairwise topology is formulated by random walk algorithm and encoded by a convolutional autoencoder to represent the hidden topological structural relations between a pair of lncRNA and disease. The new feature distribution is modeled by a variance autoencoder to reveal the underlying lncRNA–disease relationship. Finally, an attentional representation-level integration module is constructed to adaptively fuse the three representations for lncRNA–disease association prediction. The proposed model is tested over a public dataset with a comprehensive list of evaluations. Our model outperforms six state-of-the-art lncRNA–disease prediction models with statistical significance. The ablation study showed the important contributions of three representations. In particular, the improved recall rates under different top $k$ values demonstrate that our model is powerful in discovering true disease-related lncRNAs in the top-ranked candidates. Case studies of three cancers further proved the capacity of our model to discover potential disease-related lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document