scholarly journals Aluminum or Low pH – Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress

2021 ◽  
Vol 12 ◽  
Author(s):  
Miriam Szurman-Zubrzycka ◽  
Karolina Chwiałkowska ◽  
Magdalena Niemira ◽  
Mirosław Kwaśniewski ◽  
Małgorzata Nawrot ◽  
...  

Aluminum (Al) toxicity is considered to be the most harmful abiotic stress in acidic soils that today comprise more than 50% of the world’s arable lands. Barley belongs to a group of crops that are most sensitive to Al in low pH soils. We present the RNA-seq analysis of root meristems of barley seedlings grown in hydroponics at optimal pH (6.0), low pH (4.0), and low pH with Al (10 μM of bioavailable Al3+ ions). Two independent experiments were conducted: with short-term (24 h) and long-term (7 days) Al treatment. In the short-term experiment, more genes were differentially expressed (DEGs) between root meristems grown at pH = 6.0 and pH = 4.0, than between those grown at pH = 4.0 with and without Al treatment. The genes upregulated by low pH were associated mainly with response to oxidative stress, cell wall organization, and iron ion binding. Among genes upregulated by Al, overrepresented were those related to response to stress condition and calcium ion binding. In the long-term experiment, the number of DEGs between hydroponics at pH = 4.0 and 6.0 were lower than in the short-term experiment, which suggests that plants partially adapted to the low pH. Interestingly, 7 days Al treatment caused massive changes in the transcriptome profile. Over 4,000 genes were upregulated and almost 2,000 genes were downregulated by long-term Al stress. These DEGs were related to stress response, cell wall development and metal ion transport. Based on our results we can assume that both, Al3+ ions and low pH are harmful to barley plants. Additionally, we phenotyped the root system of barley seedlings grown in the same hydroponic conditions for 7 days at pH = 6.0, pH = 4.0, and pH = 4.0 with Al. The results correspond to transcriptomic data and show that low pH itself is a stress factor that causes a significant reduction of root growth and the addition of aluminum further increases this reduction. It should be noted that in acidic arable lands, plants are exposed simultaneously to both of these stresses. The presented transcriptome analysis may help to find potential targets for breeding barley plants that are more tolerant to such conditions.

Chemosphere ◽  
2016 ◽  
Vol 144 ◽  
pp. 312-318 ◽  
Author(s):  
Fang Wang ◽  
Ulrike Dörfler ◽  
Xin Jiang ◽  
Reiner Schroll

2017 ◽  
Author(s):  
Kendra L. Lawrence ◽  
David H Wise

Background. Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and migration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of litter and fungi (microbi-detritivores) and their predators. Methods. We added artificial high-quality detritus to ten 2 x 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results. Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 20% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control by fall of Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas many did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion. Our 3-yr experiment did not confirm the conclusion of strong, pervasive bottom-up control of microbi-detritivores and predators reported by Chen and Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in factors such as rainfall and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.


Hydrobiologia ◽  
2011 ◽  
Vol 676 (1) ◽  
pp. 263-277 ◽  
Author(s):  
Janet M. Fischer ◽  
Mark H. Olson ◽  
Craig E. Williamson ◽  
Jennifer C. Everhart ◽  
Paula J. Hogan ◽  
...  

2009 ◽  
Vol 417-418 ◽  
pp. 765-768 ◽  
Author(s):  
In Seok Yoon ◽  
Erik Schlangen

This study is focused on examining the effect of cracks on chloride penetration into concrete. In order to get reliable results, short-term and long term experiments were set up and chloride penetration behaviour through cracks was examined. It was noticed that chloride penetration through cracks tends to decrease with time. One of the explanations is crack-healing. Especially, this trend was obvious in concrete samples with larger crack width. However, measuring the border between chloride contaminated zone and healthy zone was clear in concrete of short-term experiment, while it was ambiguous in long term experiment.


Soil Research ◽  
2019 ◽  
Vol 57 (3) ◽  
pp. 301 ◽  
Author(s):  
M. Najafi-Ghiri ◽  
M. Niazi ◽  
M. Khodabakhshi ◽  
H. R. Boostani ◽  
H. R. Owliaie

Mechanisms of potassium (K) release and fixation in calcareous soils may differ from non-calcareous soils. In the current investigation, four soils with different properties were extracted three and 10 times (45 and 150min, defined as short- and long-term respectively) with 0.025molL−1 CaCl2, HCl and oxalic and citric acid solutions and the contents of calcium (Ca), magnesium (Mg), aluminium (Al) and K in the extracts were determined. Immediately after K extraction, 500mg kg–1 of K (as KCl) was added to the remaining soils and shaken for 24h and K-fixation capacity was determined. No significant difference was observed between CaCl2 and HCl solutions in K extraction from soils in the short- and long-term experiments; the concentrations of Ca, Mg and Al in the extractants showed that HCl was not able to dissolve soil minerals and the soils released K via exchange reaction of Ca (originated from CaCO3 dissolution by HCl) with interlayer K. The organic acids had similar behaviour to each other in the short-term experiment; however, partial dissolution of minerals by citric acid was observed. Oxalic acid extracted less K than other solutions in the short-term experiment due to precipitation of soluble Ca as oxalate salt and thereby less exchange of soluble Ca with non-exchangeable K. Oxalic and citric acids dissolved K-bearing minerals and released K in the long-term experiment, but oxalic acid was more effective. The K-fixation capacity of soils was lower when treated with organic acids than with CaCl2 and HCl, possibly due to the dissolution of K-fixing minerals like smectite and illite by oxalate and citrate. Long-term treatment of soils with different solutions decreased K-fixation capacity of soils due to dissolution of K-fixing minerals or flocculation of minerals by Ca and slower K diffusion to the interlayer. With respect to the highly calcareous nature of the studied soils, the soluble cations in calcareous soils (predominantly Ca and Mg) may have been exchanged with non-exchangeable K of clay minerals and buffered soluble K as well as organic acids produced by plant roots and microorganisms.


2001 ◽  
Vol 5 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Ricardo A. Viégas ◽  
Joaquim A. G. da Silveira ◽  
Adeildo R. de Lima Junior ◽  
José E. Queiroz ◽  
Maria J. M. Fausto

The NaCl effects on the growth and inorganic solute accumulation were studied on 30-day-old cashew plants (Anacardium occidentale L.) hydroponically grown for 8 days (short term) and 40 days (long-term) with NaCl at different levels. The shoot fresh mass yielded after 40 days, in response to 50 and 100 mol m-3 NaCl, decreased by 25 and 75%, respectively. This decrease was markedly low in root fresh mass, which did not change under 50 mol m-3 NaCl and decreased nearly to 30% under 100 mol m-3 NaCl, as compared to control plants. In short-term experiment, salinity induced only slight changes of K+ tissue concentrations in the whole plant. In the long-term experiment, K+ tissue concentrations were substantially decreased, particularly in roots. In response to time and increasing levels of salinity, Na+ and Cl- ions concentrations reached toxic levels in leaves. Thus, cashew plants already from the 4th day of salinity stress exhibited earlier symptoms of ionic toxicity, and therefore they were not able to regulate metabolic and physiological functions under these harmful conditions.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3572 ◽  
Author(s):  
Kendra L. Lawrence ◽  
David H. Wise

Background Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and emigration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise, 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of fungi and detritus (microbi-detritivores) and their predators. Methods We added artificial high-quality detritus to ten 2 × 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 30% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control during Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas others did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion Our 3-year experiment did not confirm the conclusion of strong, pervasive bottom-up control of both microbi-detritivores and predators reported by Chen & Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in abiotic and biotic factors and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.


2017 ◽  
Author(s):  
Kendra L. Lawrence ◽  
David H Wise

Background. Theory predicts strong bottom-up control in detritus-based food webs, yet field experiments with detritus-based terrestrial systems have uncovered contradictory evidence regarding the strength and pervasiveness of bottom-up control processes. Two factors likely leading to contradictory results are experiment duration, which influences exposure to temporal variation in abiotic factors such as rainfall and affects the likelihood of detecting approach to a new equilibrium; and openness of the experimental units to immigration and migration. To investigate the contribution of these two factors, we conducted a long-term experiment with open and fenced plots in the forest that was the site of an earlier, short-term experiment (3.5 months) with open plots (Chen & Wise 1999) that produced evidence of strong bottom-up control for 14 taxonomic groupings of primary consumers of litter and fungi (microbi-detritivores) and their predators. Methods. We added artificial high-quality detritus to ten 2 x 2-m forest-floor plots at bi-weekly intervals from April through September in three consecutive years (Supplemented treatment). Ten comparable Ambient plots were controls. Half of the Supplemented and Ambient plots were enclosed by metal fencing. Results. Arthropod community structure (based upon 18 response variables) diverged over time between Supplemented and Ambient treatments, with no effect of Fencing on the multivariate response pattern. Fencing possibly influenced only ca. 20% of the subsequent univariate analyses. Multi- and univariate analyses revealed bottom-up control by fall of Year 1 of some, but not all, microbi-detritivores and predators. During the following two years the pattern of responses became more complex than that observed by Chen & Wise (1999). Some taxa showed consistent bottom-up control whereas many did not. Variation across years could not be explained completely by differences in rainfall because some taxa exhibited negative, not positive, responses to detrital supplementation. Discussion. Our 3-yr experiment did not confirm the conclusion of strong, pervasive bottom-up control of microbi-detritivores and predators reported by Chen and Wise (1999). Our longer-term experiment revealed a more complex pattern of responses, a pattern much closer to the range of outcomes reported in the literature for many short-term experiments. Much of the variation in responses across studies likely reflects variation in factors such as rainfall and the quality of added detritus. Nevertheless, it is also possible that long-term resource enhancement can drive a community towards a new equilibrium state that differs from what would have been predicted from the initial short-term responses exhibited by primary and secondary consumers.


1990 ◽  
Vol 50 (1) ◽  
pp. 11-18 ◽  
Author(s):  
J. E. Hermansen

ABSTRACTA long-term experiment (first 24 weeks of lactation) with Danish Black and White cows and a short-term experiment with Jersey cows (experiment periods of 6 weeks) were carried out. In the long-term experiment, the effect of supplementing a normal dairy ration with 0·5 kg calcium (Ca) soap, 10 kg Ca-soap or 2 kg rolled barley was investigated in two herds, where silage was given ad libitum. The daily intakes of fatty acids in the diets were approximately 625, 1000, 1400 or 650 g respectively. Energy intake increased markedly by the supplementation, but not differently between soap or barley supplementation. The effect on milk production was not consistent in the two herds. In one herd, the soap supplement tended to increase milk fat yield (80 g/day) but not more than the barley supplementation which, in contrast to the fat supplementation, also increased milk protein yield. The effect of the fat was consistent over the first 6 months of lactation. In the other herd, only small differences in milk production were obtained with either supplements. In the short-term experiment carried out in mid lactation, a supplement of 0·8 kg Ca-soap increased daily intake of fatty acids from 730 to 1280 g per cow daily. Total food intake, milk and milk fat yield were not affected by the supplement but milk protein yield and live-weight gain were significantly reduced.


Author(s):  
Bárbara Ribeiro ◽  
André Padua ◽  
Adam Barno ◽  
Helena Villela ◽  
Gustavo Duarte ◽  
...  

Abstract Ocean higher temperature and acidity levels affect its carbonate chemistry, and calcifying organisms that depend on the calcium carbonate saturation state (ΩCaCO3) to build their skeleton may be vulnerable to these changes. Despite their important roles in the marine environment, little is known about the vulnerability of calcareous sponges under these stressors. We performed an acute short-term experiment (9 days) with thermal and pH stresses to explore their effects on the skeleton and microbiome of the calcareous sponge Sycettusa hastifera. We observed that sponge spicules showed no corrosion and no Mg/Ca ratio variation when exposed to stress conditions. However, the outermost spicules were smaller in low pH treatment, although these effects were often diminished when higher temperatures were also applied. In general, the sponges synthesized normally shaped spicules under stress conditions, but the proportion of deformed spicules increased significantly in elevated temperature. In addition, we observed a stable host–microbiome association in which there is microbiome flexibility under thermal and pH stresses with a significantly increase in abundance of some associated bacteria. Our results suggest that S. hastifera has low vulnerability under the future ocean conditions here designed, since it showed indications of resistance that could help them adapt and survive.


Sign in / Sign up

Export Citation Format

Share Document