scholarly journals The Prognostic Value and Function of HOXB5 in Acute Myeloid Leukemia

2021 ◽  
Vol 12 ◽  
Author(s):  
Miao Chen ◽  
Yi Qu ◽  
Pengjie Yue ◽  
Xiaojing Yan

BackgroundCurrently, cytogenetic and genetic markers are the most important for risk stratification and treatment of patients with acute myeloid leukemia (AML). Despite the identification of many prognostic factors, relatively few have made their way into clinical practice. Therefore, the identification of new AML biomarkers is useful in the prognosis and monitoring of AML and contributes to a better understanding of the molecular basis of the disease. Homeobox (HOX) genes are transcription factors that lead to cell differentiation blockade and malignant self-renewal. However, the roles of HOX genes in AML are still not fully understood and need further exploration, which may provide new strategies for the prognosis and monitoring of AML.MethodsWe analyzed the RNA sequencing and clinical data from The Cancer Genome Atlas (TCGA), VIZOME, GSE13159, and GSE9476 cohorts. Analyses were performed with GraphPad 7, the R language, and several online databases. We applied quantitative polymerase chain reaction, Western Blotting, CCK8 cell proliferation assays, and flow cytometry to verify the conclusions of the bioinformatics analysis.ResultsWe identified HOXB5 as the only gene among the HOX family that was not only elevated in AML but also a significant prognostic marker in AML patients. HOXB5 was highly expressed in AML patients with NPM1, FLT3, or DNMT3A mutations and was expressed at the highest level in patients with NPM1-FLT3-DNMT3A triple-mutant AML. Gene Ontology analysis and gene set enrichment analysis revealed that HOXB5 showed a negative correlation with the myeloid cell differentiation signature and that the tumor necrosis factor/nuclear factor κB signaling pathway was involved in the molecular mechanism. Moreover, we performed in silico protein–protein interaction analysis and 450K TCGA DNA methylation data analysis and found that HOXB5 interacted with two HOX genes (HOXA7 and HOXB4) that were commonly regulated by DNA methylation levels.ConclusionHOXB5 is associated with the malignant development of AML and may be a treatment target and biomarker for AML prognosis prediction.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting-juan Zhang ◽  
Zi-jun Xu ◽  
Yu Gu ◽  
Ji-chun Ma ◽  
Xiang-mei Wen ◽  
...  

Abstract Background Obesity confers enhanced risk for multiple diseases including cancer. The DNA methylation alterations in obesity-related genes have been implicated in several human solid tumors. However, the underlying role and clinical implication of DNA methylation of obesity-related genes in acute myeloid leukemia (AML) has yet to be elucidated. Results In the discovery stage, we identified that DNA methylation-associated LEP expression was correlated with prognosis among obesity-related genes from the databases of The Cancer Genome Atlas. In the validation stage, we verified that LEP hypermethylation was a frequent event in AML by both targeted bisulfite sequencing and real-time quantitative methylation-specific PCR. Moreover, LEP hypermethylation, correlated with reduced LEP expression, was found to be associated with higher bone marrow blasts, lower platelets, and lower complete remission (CR) rate in AML. Importantly, survival analysis showed that LEP hypermethylation was significantly associated with shorter overall survival (OS) in AML. Moreover, multivariate analysis disclosed that LEP hypermethylation was an independent risk factor affecting CR and OS among non-M3 AML. By clinical and bioinformatics analysis, LEP may be also regulated by miR-517a/b expression in AML. Conclusions Our findings indicated that the obesity-related gene LEP methylation is associated with LEP inactivation, and acts as an independent prognostic predictor in AML.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 204
Author(s):  
Adewale J. Ogunleye ◽  
Ekaterina Romanova ◽  
Yulia A. Medvedeva

Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that ecCEBPα (extra coding CEBPα) - a lncRNA transcribed in the same direction as CEBPα gene - regulates DNA methylation of CEBPα promoter in cis. Here, we hypothesize that ecCEBPα could participate in the regulation of DNA methylation in trans. Method: First, we retrieved the methylation profile of AML patients with mutated CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the ecCEBPα secondary structure in order to check the potential of ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated CEBPα locus, we show that ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions. ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 204
Author(s):  
Adewale J. Ogunleye ◽  
Ekaterina Romanova ◽  
Yulia A. Medvedeva

Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that ecCEBPα (extra coding CEBPα) - a lncRNA transcribed in the same direction as CEBPα gene - regulates DNA methylation of CEBPα promoter in cis. Here, we hypothesize that ecCEBPα could participate in the regulation of DNA methylation in trans. Method: First, we retrieved the methylation profile of AML patients with mutated CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the ecCEBPα secondary structure in order to check the potential of ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated CEBPα locus, we show that ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions. ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 312-312
Author(s):  
Jaroslav Jelinek ◽  
Heike Kroeger ◽  
Rong He ◽  
Amanda Saraf ◽  
Samantha F Lau ◽  
...  

Abstract HOX genes regulate developmental processes and tissue differentiation. The HOX family consists of 39 genes forming paralogs assembled in 4 separate clusters (A, B, C & D) on 4 chromosomes. Translocations or dysregulation of HOX genes are frequently found in leukemia. Since DNA methylation of CpG islands at transcriptional start sites of genes leads to permanent epigenetic silencing equivalent to loss-of-function mutations, we sought to investigate methylation of HOX genes in acute myeloid leukemia (AML). We performed a comprehensive DNA methylation analysis by bisulfite pyrosequencing of 31 HOX genes in 24 AML patients and characterized a subset of 10 HOX genes hypermethylated in AML (HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, HOXB13, HOXC4, HOXC10, HOXD1 & HOXD9). We next measured DNA methylation of these HOX genes in the bone marrow obtained at the time of diagnosis in another set of 67 AML patients. Hypermethylation exceeding the upper 95% confidence limit established in 23 normal control blood samples was observed in AML patients in proportions shown after gene names: HOXA4, 84%; HOXA5, 35%; HOXA6, 53%; HOXA7, 19%; HOXA9, 26%; HOXB13, 62%; HOXC4, 51%; HOXC10, 39%; HOXD1, 82%; and HOXD9, 75%. Hypermethylation of HOXA5 and HOXA6 genes was associated with longer overall survival (P=0.05 and 0.007, respectively). Additionally, methylation of HOXA5, HOXA6, HOXA9, HOXC4, and HOXD9 genes significantly correlated with methylation of genes that we previously showed to be associated with good prognosis in AML, namely NOR1 and SLC26A4 (Kroeger et al., Blood, 2007, 110: ASH Annual Meeting Abstract 595). In order to better understand the impact of DNA methylation on HOX gene silencing, we analyzed mRNA expression of the above 10 HOX genes in 24 patients with available RNA by TaqMan real time PCR and compared it to normal adult and cord blood cells. HOXA5, HOXA6, HOXA7, HOXA9, and HOXC10 mRNAs were overexpressed in 5, 7, 8, 12, and 4 patients (21%, 29%, 33%, 50%, and 17%, respectively). Overexpression of HOXA5 and HOXA7 mRNAs was associated with significantly shortened survival (P<0.001 and P=0.005, respectively), and HOXA6 mRNA overexpression showed a trend to worse survival (P=0.09). Associations of increased expression of HOXA5, HOXA6, and HOXA7 with a poor outcome suggest functional significance and are in a good agreement with our observation of a good prognosis in patients with hypermethylated HOXA5 and HOXA6 genes. As expected, expression levels of HOX genes were inversely correlated to their methylation status and no significant expression was observed in genes methylated over 50%. HOXA5 gene was an exception, since high expression of HOXA5 mRNA was observed in AML patients with average methylation densities of 66-87% detected by bisulfite pyrosequencing. Bisulfite genomic sequencing of cloned PCR products revealed the presence of alleles completely free from methylation and thus available for expression beside alleles fully methylated and presumably silenced. In conclusion, our data on HOX gene methylation in AML provide additional support to our concept of a distinct category of ‘epigenetic AML’ with pronounced epigenetic gene silencing that is associated with longer survival and greater potential for cure by chemotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chengliang Yin ◽  
Junyan Zhang ◽  
Wei Guan ◽  
Liping Dou ◽  
Yuchen Liu ◽  
...  

BackgroundAcute myeloid leukemia (AML) is a heterogeneous disease of the hematopoietic system, for which identification of novel molecular markers is potentially important for clinical prognosis and is an urgent need for treatment optimization.MethodsWe selected C-type lectin domain family 11, member A (CLEC11A) for study via several public databases, comparing expression among a variety of tumors and normal samples as well as different organs and tissues. To investigated the relationship between CLEC11A expression and clinical characteristics, we derived an AML cohort from The Cancer Genome Atlas (TCGA); we also investigated the Bloodspot and HemaExplorer databases. The Kaplan-Meier method and log-rank test were used to evaluate the associations between CLEC11A mRNA expression, as well as DNA methylation, and overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). DNA methylation levels of CLEC11A from our own 28 de novo AML patients were assessed and related to chemotherapeutic outcomes. Bioinformatics analysis of CLEC11A was carried out using public databases.ResultsMultiple public databases revealed that CLEC11A expression was higher in leukemia. The TCGA data revealed that high CLEC11A expression was linked with favorable prognosis (OS p-value = 2e-04; EFS p-value = 6e-04), which was validated in GSE6891 (OS p-value = 0; EFS p-value = 0; RFS p-value = 2e-03). Methylation of CLEC11A was negatively associated with CLEC11A expression, and high CLEC11A methylation level group was linked to poorer prognosis (OS p-value = 1e-02; EFS p-value = 2e-02). Meanwhile, CLEC11A hypermethylation was associated with poor induction remission rate and dismal survival. Bioinformatic analysis also showed that CLEC11A was an up-regulated gene in leukemogenesis.ConclusionCLEC11A may be used as a prognostic biomarker, and could do benefit for AML patients by providing precise treatment indications, and its unique gene pattern should aid in further understanding the heterogeneous AML mechanisms.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 614-614
Author(s):  
Rachel E. Rau ◽  
Min Luo ◽  
Benjamin Rodriguez ◽  
Mira Jeong ◽  
Allison Rosen ◽  
...  

Abstract Mutations of the DNA methyltransferase, DNMT3A, occur in approximately 20% of adult patients with acute myeloid leukemia (AML), and portend a poor prognosis. The most common of these mutations results in a dominant negative loss of function. Our lab observed that upon conditional inactivation of Dnmt3a in the murine hematopoietic system, Dnmt3a–/– hematopoietic stem cells (HSCs) expanded dramatically while their differentiation was inhibited, consistent with a pre-leukemic state. The likely mechanism by which Dnmt3a loss contributes to leukemogenesis is altered DNA methylation and the attendant gene expression changes, however our current understanding is incomplete. In analyses of gene expression data, we observed that murine Dnmt3a–/– HSCs markedly overexpress the histone 3, lysine 79 (H3K79) methyltransferase, Dot1l. This is of interest given the known functional interplay between DNA methylation and histone modifications. Additionally, DOT1L plays a critical role in leukemia with MLL-rearrangements, lesions that essentially never occur concomitantly with DNMT3A mutations in AML. The mutual exclusion of these lesions combined with the observed overexpression of Dot1l in our murine model, led us to postulate that MLL-rearrangements and DNMT3A mutations are distinct epigenetic aberrations that converge on a common mechanism resulting in dysregulated gene expression, specifically mediated by H3K79 methylation (H3K79me). Therefore, in the pathogenesis of DNMT3A-mutant AML, like in MLL-rearranged leukemia, DOT1L-induced H3K79me may play a central role, and may represent a viable therapeutic target. Throughout the genome of normal HSCs, expansive regions with low DNA methylation (canyons) exist. These canyons span conserved domains frequently containing transcription factors. In our Dnmt3a-/- model, canyon borders, particularly flanking genes frequently dysregulated in human leukemia such as HOX genes, are highly prone to DNA methylation loss when Dnmt3a is deleted, resulting in canyon expansion. However, not all canyons expand with Dnmt3a loss. We found a close association between canyon behavior and the associated histone marks, with expanding canyons characterized by a lack of the repressive histone mark, H3K27me. To determine if in Dnmt3a-mediated malignant hematopoiesis, H3K79me also correlates with altered DNA methylation, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) for H3K79 di-methylation (H3K79me2) and aligned these data with whole genome DNA methylation data. This revealed that H3K79me2 specifically coats canyons that lose methylation with Dnmt3a loss, including the HoxA and HoxB clusters, but is not present at canyons without methylation loss. This strong correlation between H3K79me and DNA hypomethylation with Dnmt3a loss suggests a functional interaction. To examine whether this also occurred in human samples with DNMT3A mutations, we analyzed TCGA data, which confirmed many canyon borders as regions with marked DNA methylation loss. Further, many canyon-associated genes, including HOX genes are significantly changed in human DNMT3A-mutant AML. To explore the role of H3K79me, and specifically of DOT1L in human DNMT3A-mutant AML, we utilized the DNMT3A-mutant human AML cell lines OCIAML2 and OCIAML3. These cell lines were found to have increased total H3K79me compared to DNMT3A-wild type controls, consistent with the increased Dot1l expression in Dnmt3a–/– HSCs. We then tested the in vitro efficacy of two selective DOT1L inhibitors, SYC-522 (Anglin. J Med Chem. 2011) and the Epizyme compound, EPZ004777 (Daigle. Cancer Cell. 2011), against DNMT3A-mutant cells. Both compounds led to a dose- and time-dependent inhibition of proliferation and induction of apoptosis in the DNMT3A-mutant cell lines at concentrations comparable to those used for MLL-rearranged cell lines. With treatment, DNMT3A-mutant cells also had evidence of induction of differentiation with increased expression of the mature monocyte marker, CD14. Importantly, oncogenic HOX genes overexpressed in DNMT3A-mutant AML were repressed in a time-dependent fashion with DOT1L inhibitor treatment. In conclusion, our data suggest that DOT1L may be a novel, immediately actionable therapeutic target for the treatment of DNMT3A-mutant AML. Disclosures Rau: Epizyme: Honoraria.


2020 ◽  
Author(s):  
Chao Guo ◽  
Qian-qian Ju ◽  
Chun-xia Zhang ◽  
Ming Gong ◽  
Ya-yue Gao ◽  
...  

Abstract Background Aberrant genomic methylation plays an important role in pathogenic process of acute myeloid leukemia (AML) by silencing tumor suppressor genes (TSG). While the key aberrantly methylated genes and related pathways have not been well understood yet, which we aimed to reveal by combined analysis of methylation and expression datasets. The prognostic significance was validated by survival analysis derived from TCGA database. Methods Micro-array data of GSE 15061 and GSE58477 were downloaded from Gene Expression Omnibus (GEO) database. The differentially methylated regions (DMR) and differentially expressed genes (DEG) were identified using R program (R 3.6.1). Over-representation analysis was performed to obtain the enriched biological processes and pathways. Cox hazards analysis was employed to select the genes significantly associated with AML survival, using the data derived from the Cancer Genome Atlas (TCGA) database. Subgroup analysis, regarding induction type, was conducted to identify biomarkers for HMA treatment. Furthermore, SYNJ2 associated genome-wide gene/miRNA expression and methylation profile were explored. Results A total of 198 aberrant methylation related underexpressed genes were identified. Univariable analysis revealed methylation level of 6 out of 198 genes (CORO1A/MPO/SYNJ2/EHD1/GAS2L1/SLC11A1) were significantly associated with AML survival. SYNJ2 methylation was an independent predictor for OS. Notably, subgroup analysis revealed hypermethylation of CORO1A predicted better OS in HMA group. Further gene set enrichment analysis indicated SYNJ2-associated activation of PI3K-Akt/NF-kappaB/JAK-STAT signaling and checkpoint pathway. The microRNAs, such as miR217/miR485-3p/miR-889-3p, were downregulated in SYNJ2-hypermethylated group, leading to potential HOXA13 upregulation. Conclusion The prognostic methylation signature was revealed in our studies, and SYNJ2 was proved as an independent prognostic factor. Methylation of CORO1A may serve as biomarker for HMA treatment in AML.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-37
Author(s):  
Jenny L. Smith ◽  
Eline J.M. Bertrums ◽  
Rhonda E. Ries ◽  
Fabiana Ostronoff ◽  
Amanda R. Leonti ◽  
...  

Childhood acute myeloid leukemia (AML) is an aggressive myeloid malignancy characterized by mutational and cytogenetic abnormalities. Chromosomal rearrangements involving the NUP98 gene have come to light for its' significant impacts on outcome and response to treatment. NUP98-rearranged (NUP98-R) AML includes NUP98-NSD1, NUP98-KDM5A, and various less common NUP98 fusion partners - such as HOX, SET, and Bromodomain genes. NUP98-R account for 6.8% of patients across Children's Oncology Group studies CCG2961, AAML03P1, AAML0531, and AAML1031. The majority are NUP98-NSD1 (4.6%), then NUP98-KDM5A (1.4%), and the various partners, termed NUP98-X (0.83%). However, the biological implications of NUP98-X have yet to be investigated. We define transcriptional clusters and report transcriptional profiling results to reveal similarities and differences between the diverse NUP98-R fusions. RNA sequencing was completed for 1,492 pediatric AML patients and 68 healthy bone marrow controls (NBM). The algorithms STARfusion, TransAbyss, and CICERO detected 156 NUP98-R from RNA seq: NUP98-NSD1 (N=104), NUP98-KDM5A (N=32), and NUP98-X (N=20). NUP98-X encompassed 13 unique fusion partners and 45% (9/20) had a homeobox gene partner - HOXA9 (N=4), HOXD13 (N=3), HOXA13 (N=1), and PRRX1 (N=1). Unsupervised clustering via uniform manifold approximation and projection (UMAP) with input genes selected by jackstraw PCA revealed NUP98-X cluster more closely with NUP98-NSD1, but their trajectory is dispersed within NUP98-NSD1 and NUP98-KDM5A, indicating a potential hybrid transcriptional profile (Fig 1 A). NUP98-NSD1 clustered remotely from the majority of NUP98-KDM5A, highlighting their unique transcriptional profiles despite sharing NUP98-R. Five transcriptional clusters were identified by the Leiden algorithm, followed by selection of genes significantly associated with cluster assignment. Cluster marker genes were filtered to be unique for each cluster prior gene-set enrichment analysis (Fig 1 B). Cluster C3 encompassed the largest proportion of NUP98-X, with 7 homeobox and both PHF23 cases (9/20, 45%), but also comprised of 19 NUP98-NSD1 and 2 NUP98-KDM5A. Importantly, C3 was highly associated with the expression of long non-coding RNAs, Z69666.2, MT1XP1, and RP11-455O6.2 (≥ 37% specificity, FDR < 0.001), and pathways in enriched in oncogenic microRNAs (FDR < 0.001), suggesting a non-coding signature may define this group. NUP98-NSD1 divided into two primary clusters, C1 (52/104) and C2 (31/104), differentiated by the expression of mannose receptor genes MCR1/ MRC1L1, which detect products of the lysosome pathway, significantly activated in C1 (FDR < 0.001). NUP98-KDM5A also segregated into two clusters, C4 (N=22/32) and C5 (N=7/32) based on an FAB M7/AMKL signature, with 78.6% of M7 NUP98-R located in C4 (p=0.003). Whereas, C5 cases were non-M7 and uniquely enriched in the regulation of stem cells pathway (FDR = 0.005); activation was driven by the expression of POU5F1, BMP4, WNT7, and WNT10A/B. Transcriptional profiling of NUP98-R cohorts, independently compared to other AML (N=1,336), found 27 upregulated differentially expressed genes (DEGs) shared between NUP98-X and NUP98-NSD1, including MYCN oncogene, homeobox PBX3, and DNA methyltransferase DNMT3B; on the other hand, shared overexpression of MLLT3, homeobox IRX3, and CD79a characterized similarities between NUP98-X and NUP98-KDM5A (Fig 1C) and may contribute to the hybrid expression profile observed by UMAP clustering. There were 38 DEGs shared between all NUP98-R cohorts. Differential expression analysis comparing NUP98-R cohorts vs NBM (N=68) showed that 22/38 shared DEGs were dysregulated in normal hematopoiesis and 15/38 genes were concordantly overexpressed in NUP98-R. The minimal set of 15 genes strongly implicates dysregulation at the HOX locus; these targets include hsa-mir-10a, whose genomic locus is within the HOXB cluster, CACNG4 located on chr17q, the same chromosome arm as HOXB, and the remaining shared targets were HOXA/B genes (Fig 1D). In summary, we found that NUP98-X are dispersed between NUP98-NSD1 and NUP98-KDM5A by transcriptional clustering. Clustering revealed significant pathways and marker genes that may contribute to segregation of NUP98-R cohorts, and DEGs that contribute in part to their hybrid transcriptional profile, including HOX genes, PBX3, and IRX3. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang-mei Wen ◽  
Zi-jun Xu ◽  
Ye Jin ◽  
Pei-hui Xia ◽  
Ji-chun Ma ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease related to a broad spectrum of molecular alterations. The successes of immunotherapies treating solid tumors and a deeper understanding of the immune systems of patients with hematologic malignancies have promoted the development of immunotherapies for the treatment of AML. And high tumor mutational burden (TMB) is an emerging predictive biomarker for response to immunotherapy. However, the association of gene mutation in AML with TMB and immunological features still has not been clearly elucidated. In our study, based on The Cancer Genome Atlas (TCGA) and BeatAML cohorts, 20 frequently mutated genes were found to be covered by both datasets in AML. And TP53 mutation was associated with a poor prognosis, and its mutation displayed exclusiveness with other common mutated genes in both datasets. Moreover, TP53 mutation correlated with TMB and the immune microenvironment. Gene Set Enrichment Analysis (GSEA) showed that TP53 mutation upregulated signaling pathways involved in the immune system. In summary, TP53 mutation is frequently mutated in AML, and its mutation is associated with dismal outcome, TMB, and immunological features, which may serve as a biomarker to predict immune response in AML.


Sign in / Sign up

Export Citation Format

Share Document