targeted bisulfite sequencing
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 3)

Obesity Facts ◽  
2021 ◽  
Author(s):  
Jing Li ◽  
Jinhua Zhu ◽  
Qiu Zhang ◽  
Linan Chen ◽  
Shengqi Ma ◽  
...  

Introduction: Atrial natriuretic peptide (ANP) plays a potential role in obesity with unclear molecular mechanisms. The objective of this study was to examine the association between its coding gene (NPPA) methylation and obesity. Methods: Peripheral blood DNA methylation of NPPA promoter was quantified at baseline by targeted bisulfite sequencing for 2,497 community members (mean aged 53 years, 38% men) in the Gusu cohort. Obesity was repeatedly assessed by body mass index (BMI) and waist circumference (WC) at baseline and follow-up examinations. The cross-sectional, longitudinal, and prospective associations between NPPA promoter methylation and obesity were examined. Results: Of the 9 CpG loci assayed, DNA methylation levels at 6 CpGs were significantly lower in participants with central obesity than those without (all P<0.05 for permutation test). These CpG methylation levels at baseline were also inversely associated with dynamic changes in BMI or WC during follow-up (all P<0.05 for permutation test). After an average 4 years of follow-up, hypermethylation at the 6 CpGs (CpG2 located at Chr1: 11908348, CpG3 located at Chr1:11908299, CpG4 located at Chr1:11908200, CpG5 located at Chr1:11908182, CpG6 located at Chr1:11908178, and CpG8 located at Chr1:11908165) were significantly associated with a lower risk of incident central obesity (all P<0.05 for permutation test). Conclusions: Hypomethylation at NPPA promoter was associated with increased future risk of central obesity in Chinese adults. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of central obesity.


Author(s):  
Yamato Keidai ◽  
Yorihiro Iwasaki ◽  
Kanako Iwasaki ◽  
Sachiko Honjo ◽  
Murat Bastepe ◽  
...  

Abstract Context Sporadic pseudohypoparathyroidism type 1B (sporPHP1B) is an imprinting disease without a defined genetic cause, characterized by broad methylation changes in differentially methylated regions (DMRs) of the GNAS gene. Objective This work aims to provide insights into the causative event leading to the GNAS methylation defects through comprehensive molecular genetic analyses of a pair of female monozygotic twins concordant for sporPHP1B who were conceived naturally i.e., without assisted reproductive techniques. Methods Using the leukocyte genome of the twins and family members, we performed targeted bisulfite sequencing, methylation-sensitive restriction enzyme (MSRE)-qPCR, whole-genome sequencing (WGS), high-density SNP array, and Sanger sequencing. Results Methylation analyses by targeted bisulfite sequencing and MSRE-qPCR revealed almost complete loss of methylation at the GNAS AS, XL, and A/B DMRs and gain of methylation at the NESP55 DMR in the twins, but not in other family members. Except for the GNAS locus, we did not find apparent methylation defects at other imprinted genome loci of the twins. WGS, SNP array, and Sanger sequencing did not detect the previously described genetic defects associated with familial PHP1B. Sanger sequencing also ruled out any novel genetic alterations in the entire NESP55/AS region. However, the analysis of 28 consecutive SNPs could not exclude the possibility of paternal heterodisomy in a span of 22 kb comprising exon NESP55 and AS exon 5. Conclusion Our comprehensive analysis of a pair of monozygotic twins with sporPHP1B ruled out all previously described genetic causes. Twin concordance indicates that the causative event was an imprinting error earlier than the timing of monozygotic twinning.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nelia Luviano ◽  
Marie Lopez ◽  
Fleur Gawehns ◽  
Cristian Chaparro ◽  
Paola B. Arimondo ◽  
...  

Abstract Background 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. Results Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. Conclusions Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.


2021 ◽  
Author(s):  
Liudmilla Rubbi ◽  
Haoxuan Zhang ◽  
Junxi Feng ◽  
Christopher He ◽  
Patrick Kurnia ◽  
...  

AbstractUnlike genomes, which are static throughout the lifespan of an organism, DNA methylomes are dynamic. To study these dynamics we developed quantitative models that measure the effect of multiple factors on DNA methylomes including, age, sex, weight and genetics. We conducted our study in canids, which prove to be an ideal species to assess epigenetic moderators due to their extreme variability in size and well-characterized genetic structure. We collected buccal swabs from 217 canids (207 domestic dogs and 10 gray wolves) and used targeted bisulfite sequencing to measure methylomes. We also measured genotypes at over one thousand single nucleotide polymorphisms (SNPs). We found that DNA methylomes are strongly associated with age, enabling the construction of epigenetic clocks. We also show that methylomes are strongly impacted by sex, weight and sterilization status, leading to accurate predators of these factors. Methylomes are also affected by genetics and we observe multiple associations between SNP loci and methylated CpGs. Finally, we show that several factors moderate the relationship between epigenetic ages and real ages, such as body weight, which increases epigenetic aging. In conclusion, we demonstrate that the plasticity of DNA methylomes is impacted by myriad genetic and physiological factors, and that DNA methylation biomarkers are accurate predictors of age, sex and sterilization status.


2021 ◽  
Author(s):  
Aoji Xie ◽  
Elizabeth Ensink ◽  
Peipei Li ◽  
Juozas Gordevicius ◽  
Lee L. Marshall ◽  
...  

Background The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. Here, we investigate whether the changes in the gut microbiome and associated metabolites are linked to PD symptoms and epigenetic markers in leucocytes and neurons. Methods Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified the genome-wide DNA methylation by targeted bisulfite sequencing. Results We show that lower fecal butyrate and reduced Roseburia, Romboutsia, and Prevotella counts are linked to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA (mDNA) regions in PD overlap with those altered in gastrointestinal, autoimmune, and psychiatric diseases.


2021 ◽  
Author(s):  
Miljana Tanic ◽  
Ismail Moghul ◽  
Simon Rodney ◽  
Pawan Dhami ◽  
Heli Vaikkinen ◽  
...  

Abstract DNA methylation is a key epigenetic modification in the regulation of cell fate and differentiation, and its analysis is gaining increasing importance in both basic and clinical research. Targeted Bisulfite Sequencing (TBS) has become the method of choice for the cost-effective, targeted analysis of the human methylome at base-pair resolution. Here we benchmarked five commercially available TBS platforms, including three hybridization capture-based (Agilent, Roche, and Illumina) and two RRBS-based (Diagenode and NuGen), across 11 samples. A subset of these were also compared to whole-genome DNA methylation sequencing with the Illumina and Oxford Nanopore platforms. We assessed performance with respect to workflow complexity, on/off-target performance, coverage, accuracy, and reproducibility. We find all platforms able to produce usable data but with major differences for some performance criteria, especially in the number and identity of the CpG sites covered, which affects the interoperability of datasets generated on these different platforms. To overcome this limitation, we used imputation and show that it improves the interoperability from an average of 10.35% (0.8M CpG sites) to 97% (7.6M CpG sites). Our study provides cross-validated guidance on which TBS platform to use for different features of the methylome and offers an imputation-based harmonization solution for improved interoperability between platforms, allowing comparative and integrative analysis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Darina Czamara ◽  
Linda Dieckmann ◽  
Simone Röh ◽  
Sarah Kraemer ◽  
Rebecca C. Rancourt ◽  
...  

Abstract Background Glucocorticoids (GCs) play a pivotal role in fetal programming. Antenatal treatment with synthetic GCs (sGCs) in individuals in danger of preterm labor is common practice. Adverse short- and long-term effects of antenatal sGCs have been reported, but their effects on placental epigenetic characteristics have never been systematically studied in humans. Results We tested the association between exposure to the sGC betamethasone (BET) and placental DNA methylation (DNAm) in 52 exposed cases and 84 gestational-age-matched controls. We fine-mapped associated loci using targeted bisulfite sequencing. The association of placental DNAm with gene expression and co-expression analysis on implicated genes was performed in an independent cohort including 494 placentas. Exposure to BET was significantly associated with lower placenta DNAm at an enhancer of FKBP5. FKBP5 (FK506-binding protein 51) is a co-chaperone that modulates glucocorticoid receptor activity. Lower DNAm at this enhancer site was associated with higher expression of FKBP5 and a co-expressed gene module. This module is enriched for genes associated with preeclampsia and involved in inflammation and immune response. Conclusions Our findings suggest that BET exposure during pregnancy associates with few but lasting changes in placental DNAm and may promote a gene expression profile associated with placental dysfunction and increased inflammation. This may represent a pathway mediating GC-associated negative long-term consequences and health outcomes in offspring.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Cilla Söderhäll ◽  
Lovisa E. Reinius ◽  
Pertteli Salmenperä ◽  
Massimiliano Gentile ◽  
Nathalie Acevedo ◽  
...  

Abstract Background Methylation of DNA at CpG sites is an epigenetic modification and a potential modifier of disease risk, possibly mediating environmental effects. Currently, DNA methylation is commonly assessed using specific microarrays that sample methylation at a few % of all methylated sites. Methods To understand if significant information on methylation can be added by a more comprehensive analysis of methylation, we set up a quantitative method, bisulfite oligonucleotide-selective sequencing (Bs-OS-seq), and compared the data with microarray-derived methylation data. We assessed methylation at two asthma-associated genes, IL13 and ORMDL3, in blood samples collected from children with and without asthma and fractionated white blood cell types from healthy adult controls. Results Our results show that Bs-OS-seq can uncover vast amounts of methylation variation not detected by commonly used array methods. We found that high-density methylation information from even one gene can delineate the main white blood cell lineages. Conclusions We conclude that high-resolution methylation studies can yield clinically important information at selected specific loci missed by array-based methods, with potential implications for future studies of methylation-disease associations.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A224-A224
Author(s):  
Yamato Keidai ◽  
Yorihiro Iwasaki ◽  
Kanako Iwasaki ◽  
Sachiko Honjo ◽  
Murat Bastepe ◽  
...  

Abstract Background: Pseudohypoparathyroidism (PHP) 1B is an imprinting disorder characterized by renal resistance to parathyroid hormone (PTH) without Albright Hereditary Osteodystrophy (AHO). PHP1B is associated with methylation defects at the GNAS differentially methylated regions (DMRs). In sporadic cases with PHP1B, the mechanistic basis of methylation defects remains to be solved, except in rare cases with uniparental disomy of chromosome 20. In addition, to date, monozygotic twin cases with sporadic PHP1B have not been reported. Clinical Case: The patients were 26-year-old Japanese female monozygotic twins. They had been born to nonconsanguineous parents after an uneventful pregnancy. Both twins had common biochemical features, including hypocalcemia, hyperphosphatemia, elevated PTH levels, and impaired urinary excretion of phosphorus and cAMP in response to teriparatide. They showed no signs of AHO. The serum calcium levels of their parents and brother were within the normal range, and family history was unremarkable. Based on these findings, the twins were diagnosed with PHP1B. Targeted bisulfite sequencing of the GNAS DMRs in all family members revealed almost complete gain-of-methylation at the NESP55 DMR, and loss-of-methylation at the AS, XL, and A/B DMRs in the twins, but not in other family members. Except for the GNAS locus, we did not find clear methylation defects in other imprinted genome loci in the twins. Methylation defects at the GNAS locus were further confirmed by methylation-sensitive restriction enzyme-qPCR. Whole-genome sequencing of the twins showed no pathogenic variants in the GNAS exons encoding the Gs alpha subunit. No large deletions or insertions were found at the STX16 locus or in the region from AS exon 5 to XL. Based on the SNP genotyping results, large paternal isodisomies in the GNAS DMRs were unlikely. Collectively, these results suggested that the twins had concordant methylation defects that are seen in the sporadic form of PHP1b. We speculate that an early developmental event before the twin splitting is responsible for the abnormal methylation of the GNAS DMRs. Conclusion: We report, for the first time, monozygotic twins with sporadic PHP1B who were phenotypically and epigenetically concordant. Our comprehensive molecular genetic analyses have thus far ruled out the previously described genetic defects underlying PHP1B. The current findings provide new insights into the mechanistic basis of the GNAS methylation defects in sporadic PHP1B.


Author(s):  
Xubin Zheng ◽  
Qiong Wu ◽  
Haonan Wu ◽  
Kwong-Sak Leung ◽  
Man-Hon Wong ◽  
...  

Bisulfite sequencing is considered as the gold standard approach for measuring DNA methylation, which acts as a pivotal part in regulating a variety of biological processes without changes in DNA sequences. In this study, we introduced the most prevalent methods for processing bisulfite sequencing data and evaluated the consistency of the data acquired from different measurements in liver cancer. Firstly, we introduced three commonly used bisulfite sequencing assays, i.e., reduced-representation bisulfite sequencing (RRBS), whole-genome bisulfite sequencing (WGBS), and targeted bisulfite sequencing (targeted BS). Next, we discussed the principles and compared different methods for alignment, quality assessment, methylation level scoring, and differentially methylated region identification. After that, we screened differential methylated genes in liver cancer through the three bisulfite sequencing assays and evaluated the consistency of their results. Ultimately, we compared bisulfite sequencing to 450 k beadchip and assessed the statistical similarity and functional association of differentially methylated genes (DMGs) among the four assays. Our results demonstrated that the DMGs measured by WGBS, RRBS, targeted BS and 450 k beadchip are consistently hypo-methylated in liver cancer with high functional similarity.


Sign in / Sign up

Export Citation Format

Share Document