scholarly journals Genome-wide regulation of CpG methylation by ecCEBPα in acute myeloid leukemia

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 204
Author(s):  
Adewale J. Ogunleye ◽  
Ekaterina Romanova ◽  
Yulia A. Medvedeva

Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that ecCEBPα (extra coding CEBPα) - a lncRNA transcribed in the same direction as CEBPα gene - regulates DNA methylation of CEBPα promoter in cis. Here, we hypothesize that ecCEBPα could participate in the regulation of DNA methylation in trans. Method: First, we retrieved the methylation profile of AML patients with mutated CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the ecCEBPα secondary structure in order to check the potential of ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated CEBPα locus, we show that ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions. ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 204
Author(s):  
Adewale J. Ogunleye ◽  
Ekaterina Romanova ◽  
Yulia A. Medvedeva

Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by genetic and epigenetic aberrations that alter the differentiation capacity of myeloid progenitor cells. The transcription factor CEBPα is frequently mutated in AML patients leading to an increase in DNA methylation in many genomic locations. Previously, it has been shown that ecCEBPα (extra coding CEBPα) - a lncRNA transcribed in the same direction as CEBPα gene - regulates DNA methylation of CEBPα promoter in cis. Here, we hypothesize that ecCEBPα could participate in the regulation of DNA methylation in trans. Method: First, we retrieved the methylation profile of AML patients with mutated CEBPα locus from The Cancer Genome Atlas (TCGA). We then predicted the ecCEBPα secondary structure in order to check the potential of ecCEBPα to form triplexes around CpG loci and checked if triplex formation influenced CpG methylation, genome-wide. Results: Using DNA methylation profiles of AML patients with a mutated CEBPα locus, we show that ecCEBPα could interact with DNA by forming DNA:RNA triple helices and protect regions near its binding sites from global DNA methylation. Further analysis revealed that triplex-forming oligonucleotides in ecCEBPα are structurally unpaired supporting the DNA-binding potential of these regions. ecCEBPα triplexes supported with the RNA-chromatin co-localization data are located in the promoters of leukemia-linked transcriptional factors such as MLF2. Discussion: Overall, these results suggest a novel regulatory mechanism for ecCEBPα as a genome-wide epigenetic modulator through triple-helix formation which may provide a foundation for sequence-specific engineering of RNA for regulating methylation of specific genes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting-juan Zhang ◽  
Zi-jun Xu ◽  
Yu Gu ◽  
Ji-chun Ma ◽  
Xiang-mei Wen ◽  
...  

Abstract Background Obesity confers enhanced risk for multiple diseases including cancer. The DNA methylation alterations in obesity-related genes have been implicated in several human solid tumors. However, the underlying role and clinical implication of DNA methylation of obesity-related genes in acute myeloid leukemia (AML) has yet to be elucidated. Results In the discovery stage, we identified that DNA methylation-associated LEP expression was correlated with prognosis among obesity-related genes from the databases of The Cancer Genome Atlas. In the validation stage, we verified that LEP hypermethylation was a frequent event in AML by both targeted bisulfite sequencing and real-time quantitative methylation-specific PCR. Moreover, LEP hypermethylation, correlated with reduced LEP expression, was found to be associated with higher bone marrow blasts, lower platelets, and lower complete remission (CR) rate in AML. Importantly, survival analysis showed that LEP hypermethylation was significantly associated with shorter overall survival (OS) in AML. Moreover, multivariate analysis disclosed that LEP hypermethylation was an independent risk factor affecting CR and OS among non-M3 AML. By clinical and bioinformatics analysis, LEP may be also regulated by miR-517a/b expression in AML. Conclusions Our findings indicated that the obesity-related gene LEP methylation is associated with LEP inactivation, and acts as an independent prognostic predictor in AML.


2013 ◽  
Vol 20 (5) ◽  
pp. 1135-1145 ◽  
Author(s):  
Sophia Adamia ◽  
Benjamin Haibe-Kains ◽  
Patrick M. Pilarski ◽  
Michal Bar-Natan ◽  
Samuel Pevzner ◽  
...  

Haematologica ◽  
2020 ◽  
Author(s):  
Alisa Damnernsawad ◽  
Daniel Bottomly ◽  
Stephen E. Kurtz ◽  
Christopher A. Eide ◽  
Shannon K. McWeeney ◽  
...  

Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genome-wide CRISPR screen, we identified LZTR1, NF1, TSC1 or TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of sorafenib resistance. Analyses of ex vivo drug sensitivity assays in FLT3-ITD AML patient samples revealed lower expression of LZTR1, NF1, and TSC2 correlated with sorafenib sensitivity. Importantly, MAPK and/or MTOR complex1 (MTORC1) activity were upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, or sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting its effectiveness in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 858-858
Author(s):  
Ileana Antony-Debre ◽  
Ananya Paul ◽  
Joana Leite ◽  
Kelly Mitchell ◽  
Hye Mi Kim ◽  
...  

Abstract Functionally critical decreases in levels or activity of the ETS family transcription factor PU.1 are present in approximately 2/3 of patients with acute myeloid leukemia (AML), across different AML subtypes (Sive, Leukemia 2016) including at the stem cell level (Steidl, Nat Genet 2006; Will, Nat Med 2015). Thus, targeting PU.1 could be an appealing option for treatment. As complete loss of PU.1 leads to stem cell failure (Iwasaki, Blood 2005), we hypothesized that PU.1 inhibition could eradicate leukemic cells harboring already low levels of PU.1, with modest effects on normal cells. We initially tested this hypothesis using 3 different shRNAs, and found that PU.1 inhibition led to a significant decrease in proliferation and clonogenicity, and increased apoptosis of mouse and human leukemic cell lines with low PU.1 levels, as well as the majority of primary human AML cells tested. We demonstrated that these effects were indeed due to decreased PU.1 levels by retroviral add-back experiments. The direct pharmacologic targeting of transcription factors has proven challenging in the past. Besides the core ETS binding motif (GGAA) in the DNA major groove, PU.1 binding to chromatin depends on additional minor groove contacts enriched for AT nucleotides upstream of the ETS motif, which determine selectivity for PU.1. Using an integrated screening strategy utilizing biosensor surface plasmon resonance, DNA footprinting, and cell-based dual-color PU.1 reporter assays, we developed novel small molecules of the heterocyclic diamidine family acting as first-in-class PU.1 inhibitors. Targeted occupancy by our compounds in the minor groove induces perturbations in DNA conformation that are transmitted to the PU.1 site in the major groove and thus inhibits PU.1 binding via an allosteric mechanism. Consistent with this, the inhibitory effects were selective for PU.1 versus other ETS transcription factors. Treatment with 3 different compounds led to cell growth inhibitory effect with respect to PU.1 level and preferentially affects PU.1low AML cells. Similarly to what we observed with shRNAs, treatment with our novel inhibitors led to decreased proliferation and colony forming capacity, increased apoptosis, and disrupted serial replating capacity of PU.1low AML cells and a majority of primary AML cell samples. Targeted ChIP and expression analysis showed that the compounds disrupt PU.1-promoter interaction and lead to downregulation of canonical PU.1 transcriptional targets in AML cells, confirming on-target activity in AML cells. Genome-wide analysis showed highly significant enrichment of known transcriptional targets of PU.1, and selectivity over genes regulated by other ETS family members. Comparison with published transcriptomic and PU.1 ChIP-seq data sets, as well as ARACNe analysis of the PU.1 regulon in primary AML cells, demonstrated that the inhibitors antagonize PU.1-regulated pathways at a genome-wide level. ChIP-seq performed in PU.1low AML cells confirmed a genome-wide decrease of PU.1 peaks after treatment and provides novel insight into the molecular mechanisms mediating the anti-leukemic effects of pharmacological PU.1 inhibition. To test the effects of PU.1 inhibition on normal hematopoiesis, we treated normal hematopoietic stem/progenitors cells (HSPC) in colony forming assays and saw decreased production of mature granulo-monocytic cells, consistent with PU.1's known role in this lineage. However, this effect was reversible upon drug removal, and serial replating capacity was not affected suggesting no significant effects on more immature HSPC. Congenic transplantation assays of treated normal bone marrow cells led to no change in myeloid and T-cells and only a modest decrease in B-cell numbers. Lastly, in vivo treatment with PU.1 inhibitors in mouse and human AML (xeno)transplantation models significantly decreased tumor burden and increased survival. To conclude, our study provides proof-of-principle for PU.1 inhibition as a novel therapeutic strategy in AML. Furthermore, we present the development of first-in-class PU.1 inhibitors acting via an allosteric minor groove-mediated mechanism. Our work shows that the specific pharmacological targeting of the DNA interaction of transcription factors such as PU.1 is feasible in principle, and may open the way for targeting of other transcription factors through minor groove-directed approaches. Disclosures Will: Novartis Pharmaceuticals: Consultancy, Research Funding. Steidl: Celgene: Consultancy; Aileron Therapeutics: Consultancy, Research Funding; Novartis: Research Funding; GlaxoSmithKline: Research Funding; Bayer Healthcare: Consultancy.


2021 ◽  
Author(s):  
Wei-Yu Lin ◽  
Sarah Fordham ◽  
Eric Hungate ◽  
Nicola Sunter ◽  
Claire Elstob ◽  
...  

Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we performed a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identified a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 x 10-8; KMT5B). We also identified a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N=1287) at 6p21.32 (rs3916765; P = 1.51 x 10 -10; HLA). Our results inform on AML etiology by identifying putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).


Author(s):  
Ding Li ◽  
Jiaming Liang ◽  
Cheng Cheng ◽  
Wenbin Guo ◽  
Shuolei Li ◽  
...  

Background: Acute myeloid leukemia (AML) remains the most common type of hematopoietic malignancy in adults and has an unfavorable outcome. Herein, we aimed to construct an N6-methylandenosine (m6A)-related long noncoding RNAs (lncRNAs) signature to accurately predict the prognosis of patients with AML using the data downloaded from The Cancer Genome Atlas (TCGA) database.Methods: The RNA-seq and clinical data were obtained from the TCGA AML cohort. First, Pearson correlation analysis was performed to identify the m6A-related lncRNAs. Next, univariate Cox regression analysis was used to determine the candidate lncRNAs with prognostic value. Then, feature selection was carried out by Least absolute shrinkage and selection operator (LASSO) analysis, and seven eligible m6A-related lncRNAs were included to construct the prognostic risk signature. Kaplan–Meier and receiver operating characteristic (ROC) curve analyses were performed to evaluate the predictive capacity of the risk signature both in the training and testing datasets. A nomogram was used to predict 1-year, 2-year, and 3-year overall survival (OS) of AML patients. Next, the expression levels of lncRNAs in the signature were validated in AML samples by qRT-PCR. Functional enrichment analyses were carried out to identify probable biological processes and cellular pathways. The ceRNA network was developed to explore the downstream targets and mechanisms of m6A-related lncRNAs in AML.Results: Seven m6A-related lncRNAs were identified as a prognostic signature. The low-risk group hold significantly prolonged OS. The nomogram showed excellent accuracy of the signature for predicting 1-year, 2-year and 3-year OS (AUC = 0.769, 0.820, and 0.800, respectively). Moreover, the risk scores were significantly correlated with enrichment in cancer hallmark- and malignancy-related pathways and immunotherapy response in AML patients.Conclusion: We developed and validated a novel risk signature with m6A-related lncRNAs which could predict prognosis accurately and reflect the immunotherapy response in AML patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chengliang Yin ◽  
Junyan Zhang ◽  
Wei Guan ◽  
Liping Dou ◽  
Yuchen Liu ◽  
...  

BackgroundAcute myeloid leukemia (AML) is a heterogeneous disease of the hematopoietic system, for which identification of novel molecular markers is potentially important for clinical prognosis and is an urgent need for treatment optimization.MethodsWe selected C-type lectin domain family 11, member A (CLEC11A) for study via several public databases, comparing expression among a variety of tumors and normal samples as well as different organs and tissues. To investigated the relationship between CLEC11A expression and clinical characteristics, we derived an AML cohort from The Cancer Genome Atlas (TCGA); we also investigated the Bloodspot and HemaExplorer databases. The Kaplan-Meier method and log-rank test were used to evaluate the associations between CLEC11A mRNA expression, as well as DNA methylation, and overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS). DNA methylation levels of CLEC11A from our own 28 de novo AML patients were assessed and related to chemotherapeutic outcomes. Bioinformatics analysis of CLEC11A was carried out using public databases.ResultsMultiple public databases revealed that CLEC11A expression was higher in leukemia. The TCGA data revealed that high CLEC11A expression was linked with favorable prognosis (OS p-value = 2e-04; EFS p-value = 6e-04), which was validated in GSE6891 (OS p-value = 0; EFS p-value = 0; RFS p-value = 2e-03). Methylation of CLEC11A was negatively associated with CLEC11A expression, and high CLEC11A methylation level group was linked to poorer prognosis (OS p-value = 1e-02; EFS p-value = 2e-02). Meanwhile, CLEC11A hypermethylation was associated with poor induction remission rate and dismal survival. Bioinformatic analysis also showed that CLEC11A was an up-regulated gene in leukemogenesis.ConclusionCLEC11A may be used as a prognostic biomarker, and could do benefit for AML patients by providing precise treatment indications, and its unique gene pattern should aid in further understanding the heterogeneous AML mechanisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei-Yu Lin ◽  
Sarah E. Fordham ◽  
Eric Hungate ◽  
Nicola J. Sunter ◽  
Claire Elstob ◽  
...  

AbstractAcute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10−8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10−10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).


Sign in / Sign up

Export Citation Format

Share Document