scholarly journals Cystatin M/E Variant Causes Autosomal Dominant Keratosis Follicularis Spinulosa Decalvans by Dysregulating Cathepsins L and V

2021 ◽  
Vol 12 ◽  
Author(s):  
Katja M. Eckl ◽  
Robert Gruber ◽  
Louise Brennan ◽  
Andrew Marriott ◽  
Roswitha Plank ◽  
...  

Keratosis follicularis spinulosa decalvans (KFSD) is a rare cornification disorder with an X-linked recessive inheritance in most cases. Pathogenic variants causing X-linked KFSD have been described in MBTPS2, the gene for a membrane-bound zinc metalloprotease that is involved in the cleavage of sterol regulatory element binding proteins important for the control of transcription. Few families have been identified with an autosomal dominant inheritance of KFSD. We present two members of an Austrian family with a phenotype of KFSD, a mother and her son. The disease was not observed in her parents, pointing to a dominant inheritance with a de novo mutation in the index patient. Using whole-exome sequencing, we identified a heterozygous missense variant in CST6 in DNA samples from the index patient and her affected son. In line with family history, the variant was not present in samples from her parents. CST6 codes for cystatin M/E, a cysteine protease inhibitor. Patient keratinocytes showed increased expression of cathepsin genes CTSL and CTSV and reduced expression of transglutaminase genes TGM1 and TGM3. A relative gain of active, cleaved transglutaminases was found in patient keratinocytes compared to control cells. The variant found in CST6 is expected to affect protein targeting and results in marked disruption of the balance between cystatin M/E activity and its target proteases and eventually transglutaminases 1 and 3. This disturbance leads to an impairment of terminal epidermal differentiation and proper hair shaft formation seen in KFSD.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


2002 ◽  
pp. 649-656 ◽  
Author(s):  
J Rutishauser ◽  
P Kopp ◽  
MB Gaskill ◽  
TJ Kotlar ◽  
GL Robertson

OBJECTIVE: To test further the hypothesis that autosomal dominant neurohypophyseal diabetes insipidus (adFNDI) is caused by heterozygous mutations in the vasopressin-neurophysin II (AVP-NPII) gene that exert a dominant negative effect by producing a precursor that misfolds, accumulates and eventually destroys the neurosecretory neurons. METHODS: Antidiuretic function, magnetic resonance imaging (MRI) of the posterior pituitary and AVP-NPII gene analysis were performed in 10 affected members of three unreported families with adFNDI. RESULTS: As in previously studied patients, adFNDI apparently manifested after birth, was due to a partial or severe deficiency of AVP, and was associated with absence or diminution of the hyperintense MRI signal normally emitted by the posterior pituitary, and with a heterozygous mutation in the AVP-NPII gene. In family A, a transition 275G-->A, which predicts replacement of cysteine 92 by tyrosine (C92Y), was found in the index patient, but not in either parent, indicating that it arose de novo. The six affected members of family B had a transversion 160G-->C, which predicts replacement of glycine 54 by arginine (G54R). It appeared de novo in the oldest affected member, and was transmitted in a dominant manner. In family C, six of 15 living affected members were tested and all had a novel transition, 313T-->C, which predicts replacement of cysteine 105 by arginine (C105R). It, too, was transmitted in a dominant manner. As in other patients with adFNDI, the amino acids replaced by the mutations in these three families are known to be particularly important for correct and efficient folding of the precursor. CONCLUSIONS: These findings are consistent with the malfolding/toxicity hypothesis underlying the pathogenesis of adFNDI. Moreover, they illustrate the value of genetic analysis in all patients who develop idiopathic diabetes insipidus in childhood, even if no other family members are affected.


Author(s):  
Caio Robledo Quaio ◽  
Jose Ricardo Magliocco Ceroni ◽  
Murilo Castro Cervato ◽  
Helena Strelow Thurow ◽  
Caroline Monaco Moreira ◽  
...  

Genomic studies may generate massive amounts of data, bringing interpretation challenges. Efforts for the differentiation of benign and pathogenic variants gain importance. In this article, we used segregation analysis and other molecular data to reclassify to benign or likely benign several rare clinically curated variants of autosomal dominant inheritance from a cohort of 500 Brazilian patients with rare diseases. This study included only symptomatic patients who had undergone molecular investigation with exome sequencing for suspected diseases of genetic etiology. Variants clinically suspected as the causative etiology and harbored by genes associated with highly-penetrant conditions of autosomal dominant inheritance underwent Sanger confirmation in the proband and inheritance pattern determination because a “de novo” event was expected. Among all 327 variants studied, 321 variants were inherited from asymptomatic parents. Considering segregation analysis, we have reclassified 51 rare variants as benign (n=51) and 211 as likely benign (n=211). In our study, the inheritance of a highly penetrant variant expected to be de novo for pathogenicity assumption was considered as a non-segregation and, therefore, a key step for benign or likely benign classification. Studies like ours may help to identify rare benign variants and improve the correct interpretation of genetic findings.


2021 ◽  
Author(s):  
Caio Robledo D' Angioli Costa Quaio ◽  
Jose Ricardo Magliocco Ceroni ◽  
Murilo Castro Cervato ◽  
Helena Strelow Thurow ◽  
Caroline Monaco Moreira ◽  
...  

Abstract Genomic studies may generate massive amounts of data, bringing interpretation challenges. Efforts for the differentiation of benign and pathogenic variants gain importance.In this article, we used segregation analysis and other molecular data to reclassify to benign or likely benign several rare clinically curated variants of autosomal dominant inheritance from a cohort of 500 Brazilian patients with rare diseases.This study included only symptomatic patients who had undergone molecular investigation with exome sequencing for suspected diseases of genetic etiology. Variants clinically suspected as the causative etiology and harbored by genes associated with highly-penetrant conditions of autosomal dominant inheritance underwent Sanger confirmation in the proband and inheritance pattern determination because a “de novo” event was expected.Among all 327 variants studied, 321 variants were inherited from asymptomatic parents. Considering segregation analysis, we have reclassified 51 rare variants as benign (n=51) and 211 as likely benign (n=211).In our study, the inheritance of a highly penetrant variant expected to be de novo for pathogenicity assumption was considered as a non-segregation and, therefore, a key step for benign or likely benign classification. Studies like ours may help to identify rare benign variants and improve the correct interpretation of genetic findings.


2018 ◽  
Vol 2 (s1) ◽  
pp. 19-21
Author(s):  
Yeltay Rakhmanov ◽  
Paolo Enrico Maltese ◽  
Stefano Paolacci ◽  
Alice Bruson ◽  
Matteo Bertelli

Abstract Emberger Syndrome (ES) is a very rare genetic disorder associated with primary lymphedema, myelodysplasia and immunodeficiency. The syndrome has autosomal dominant inheritance with incomplete penetrance. Sporadic cases caused by de novo germinal mutations in the GATA2 gene have also been described. We developed the test protocol on the basis of the latest research findings and diagnostic protocols on lymphatic malformation in ES. The genetic test is useful for confirming diagnosis, as well as for differential diagnosis, couple risk assessment and access to clinical trials.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1298
Author(s):  
Gabriel C. Dworschak ◽  
Iris A. L. M. van Rooij ◽  
Heiko M. Reutter

Anorectal malformations (ARM) represent a rare birth defect of the hindgut that occur in approximately 1 in 3000 live births. Around 60% of ARM occur with associated anomalies including defined genetic syndromes and associations with chromosomal aberrations. The etiology of ARM is heterogeneous, with the individual environmental or genetic risk factors remaining unknown for the majority of cases. The occurrence of familial ARM and previous epidemiologic analysis suggest autosomal dominant inheritance in a substantial subset of ARM patients. The implicated mortality and reduced fecundity in patients with ARM would lead to allele loss. However, mutational de novo events among the affected individuals could compensate for the evolutionary pressure. With the implementation of exome sequencing, array-based molecular karyotyping and family-based rare variant analyses, the technologies are available to identify the respective factors. This review discusses the identification of disease-causing variants among individuals with ARM. It highlights the role of mutational de novo events.


2015 ◽  
Vol 100 (3) ◽  
pp. E473-E477 ◽  
Author(s):  
Ravikumar Balasubramanian ◽  
Sheena Chew ◽  
Sarah E. MacKinnon ◽  
Peter B. Kang ◽  
Caroline Andrews ◽  
...  

Context: A heterozygous de novo c.1228G>A mutation (E410K) in the TUBB3 gene encoding the neuronal-specific β-tubulin isotype 3 (TUBB3) causes the TUBB3 E410K syndrome characterized by congenital fibrosis of the extraocular muscles (CFEOM), facial weakness, intellectual and social disabilities, and Kallmann syndrome (anosmia with hypogonadotropic hypogonadism). All TUBB3 E410K subjects reported to date are sporadic cases. Objective: This study aimed to report the clinical, genetic, and molecular features of a familial presentation of the TUBB3 E410K syndrome. Design: Case report of a mother and three affected children with clinical features of the TUBB3 E410K syndrome. Setting: Academic Medical Center. Main Outcome Measures: Genetic analysis of the TUBB3 gene and clinical evaluation of endocrine and nonendocrine phenotypes. Results: A de novo TUBB3 c.1228G>A mutation arose in a female proband who displayed CFEOM, facial weakness, intellectual and social disabilities, and anosmia. However, she underwent normal sexual development at puberty and had three spontaneous pregnancies with subsequent autosomal-dominant inheritance of the mutation by her three boys. All sons displayed nonendocrine features of the TUBB3 E410K syndrome similar to their mother but, in addition, had variable features suggestive of additional endocrine abnormalities. Conclusions: This first report of an autosomal-dominant inheritance of the TUBB3 c.1228G>A mutation in a family provides new insights into the spectrum and variability of endocrine phenotypes associated with the TUBB3 E410K syndrome. These observations emphasize the need for appropriate clinical evaluation and complicate genetic counseling of patients and families with this syndrome.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1877
Author(s):  
Gilles Lalmanach ◽  
Mariana Kasabova-Arjomand ◽  
Fabien Lecaille ◽  
Ahlame Saidi

Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Saba Ahmad ◽  
Luis Manon ◽  
Gifty Bhat ◽  
Jerry Machado ◽  
Alice Zalan ◽  
...  

AbstractTuberous sclerosis complex (TSC) is an autosomal dominant disease associated with tumors and malformed tissues in the brain and other vital organs. We report a novel de novo frameshift variant of the TSC1 gene (c.434dup;p. Ser146Valfs*8) in a child with TSC who initially presented with a sacral teratoma. This previously unreported association between TSC and teratoma has broad implications for the pathophysiology of embryonic tumors and mechanisms underlying cellular differentiation.


Sign in / Sign up

Export Citation Format

Share Document